

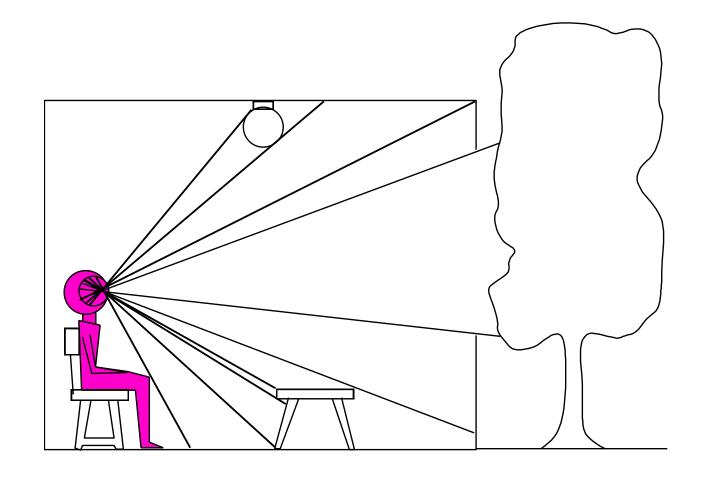
3D-aware Synthesis

Jun-Yan Zhu

16-726, Spring 2023

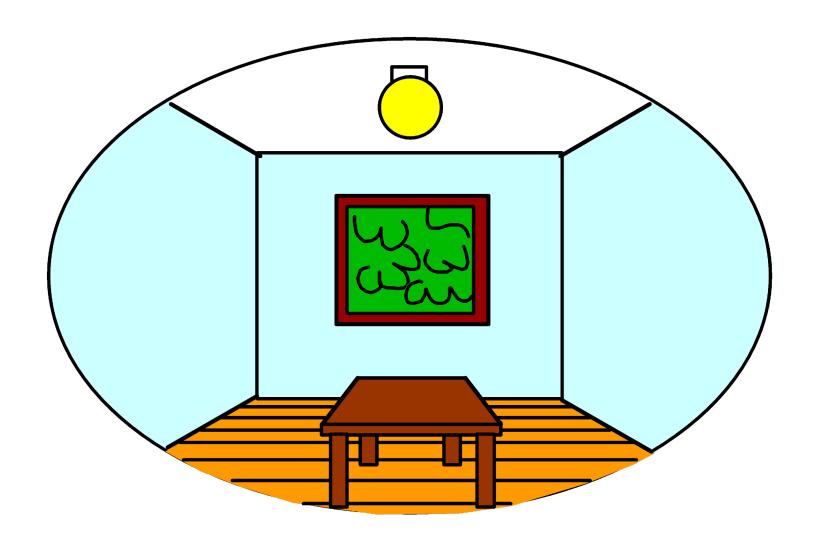
What do we see?

3D world



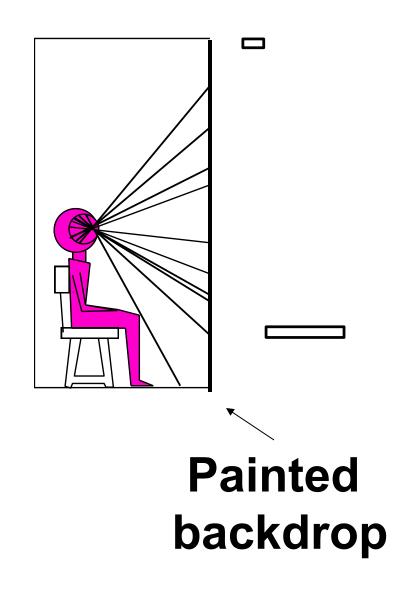
Point of observation

2D image

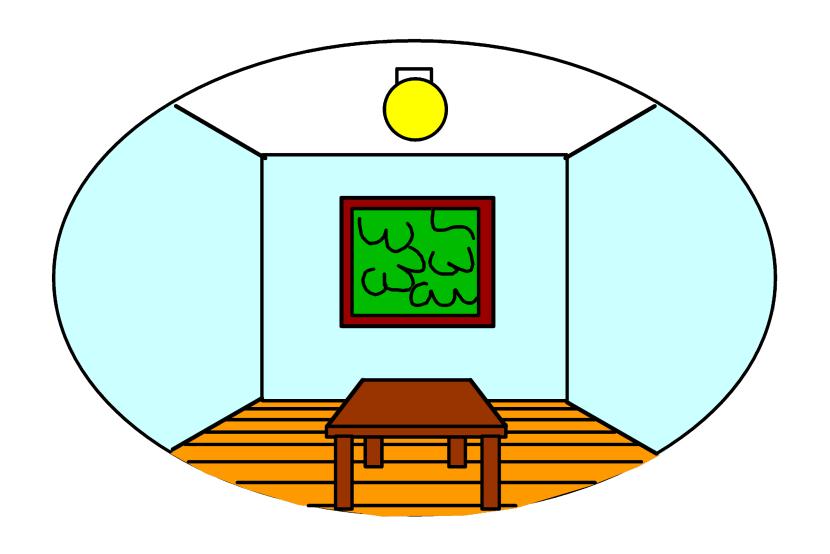


What do we see?

3D world



2D image



The Plenoptic Function

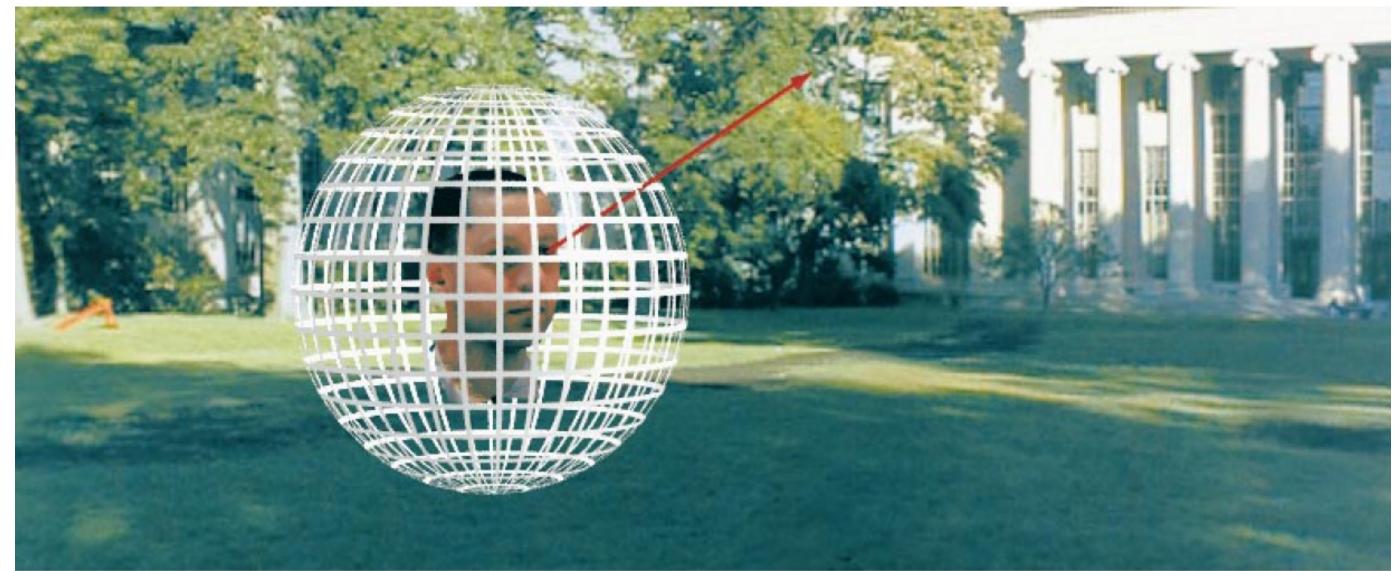
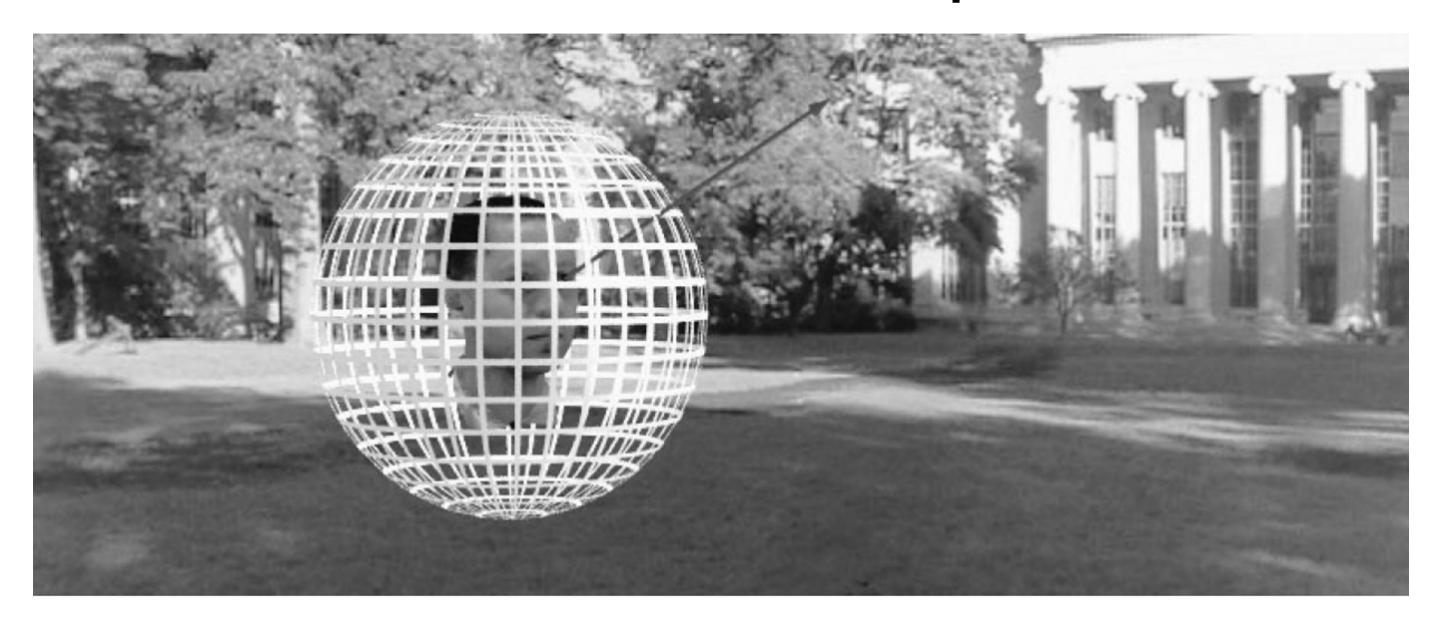


Figure by Leonard McMillan

- •Q: What is the set of all things that we can ever see?
- •A: The Plenoptic Function (Adelson & Bergen)

•Let's start with a stationary person and try to parameterize everything that she or he can see...

Grayscale snapshot

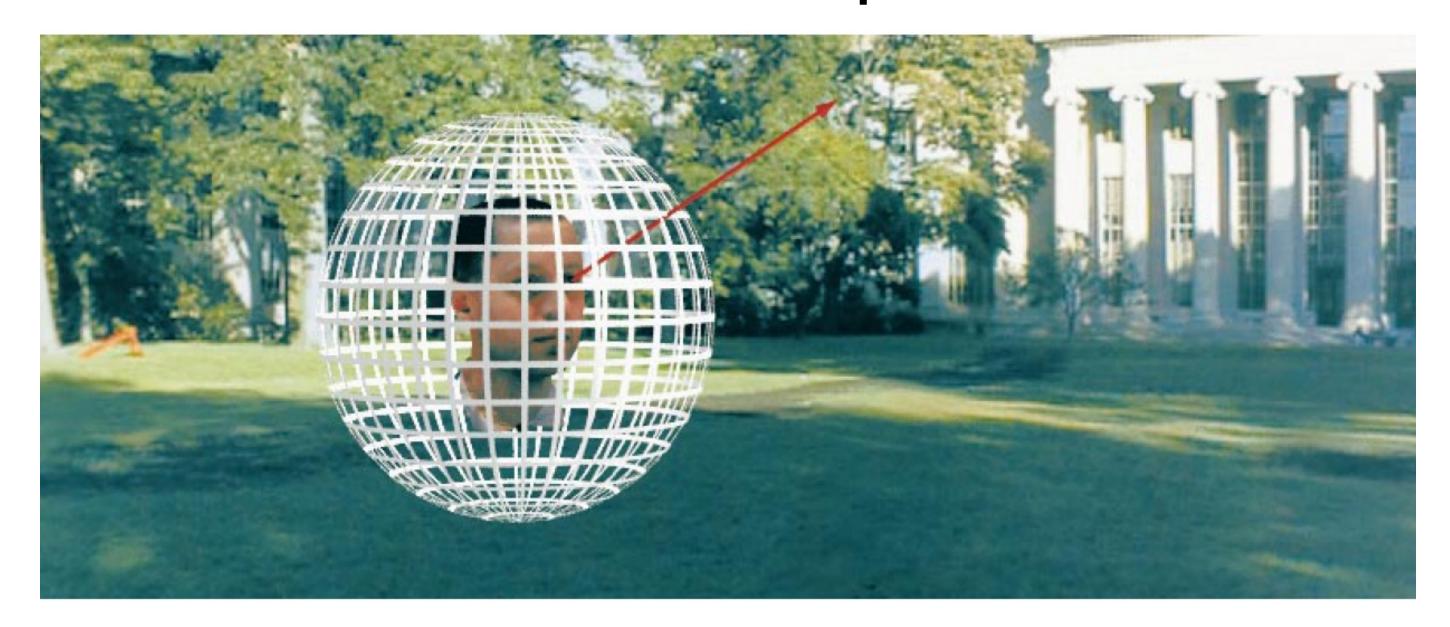


•is intensity of light

 $P(\theta,\phi)$

- Seen from a single view point
- At a single time
- Averaged over the wavelengths of the visible spectrum
- •(can also do P(x,y), but spherical coordinate are nicer)

Color snapshot



 $P(\theta,\phi,\lambda)$

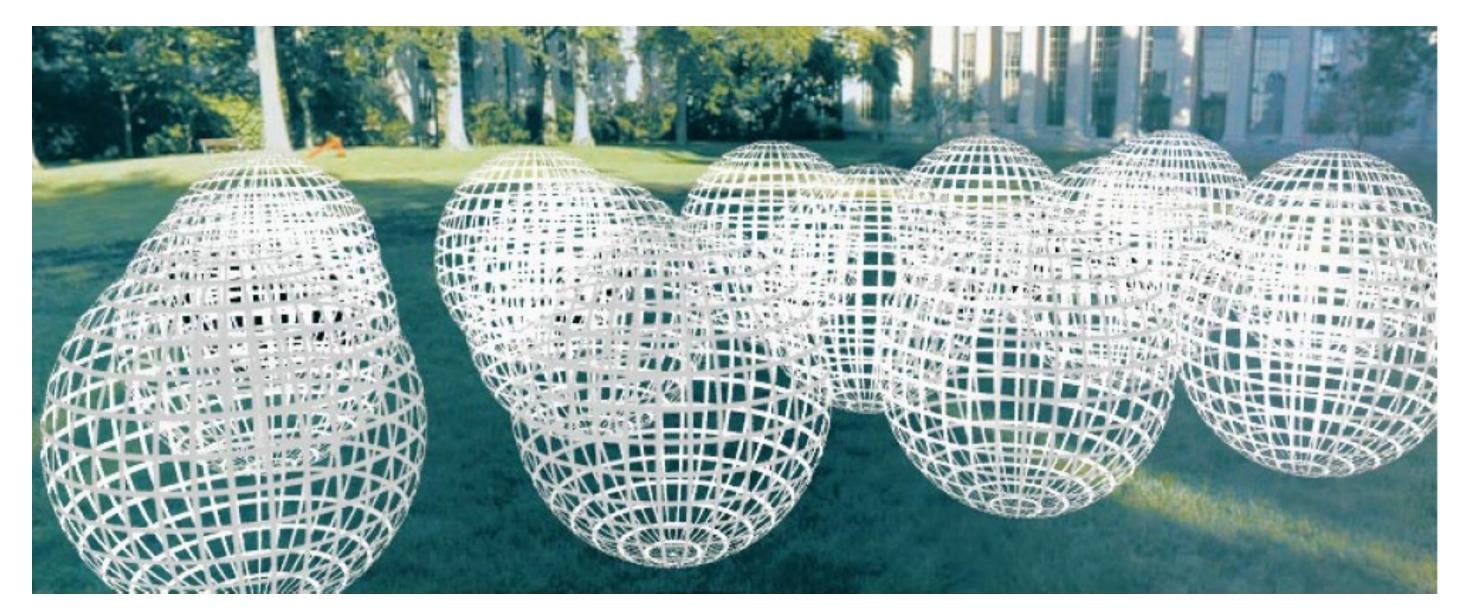
- •is intensity of light
 - Seen from a single view point
 - At a single time
 - As a function of wavelength

Amovie

 $P(\theta,\phi,\lambda,t)$

- •is intensity of light
 - Seen from a single view point
 - Over time
 - As a function of wavelength

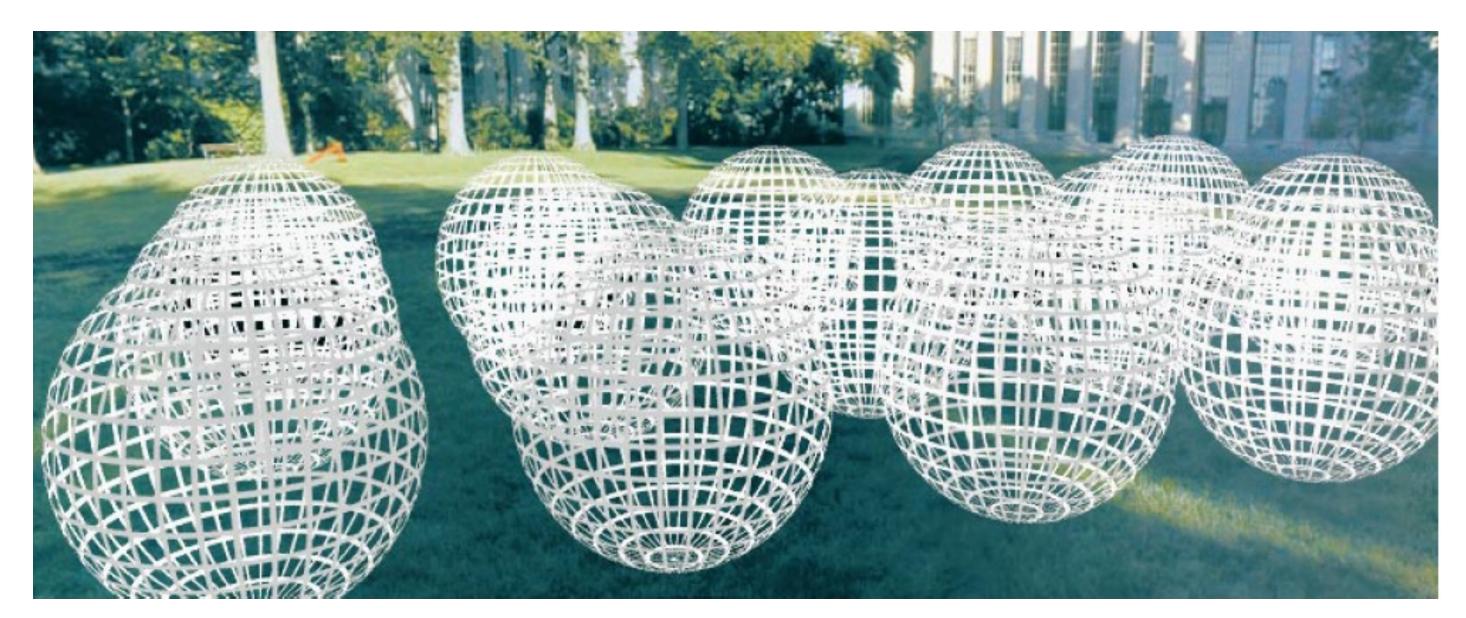
Holographic movie



 $P(\theta,\phi,\lambda,t,V_X,V_Y,V_Z)$

- •is intensity of light
 - Seen from ANY viewpoint
 - Over time
 - As a function of wavelength

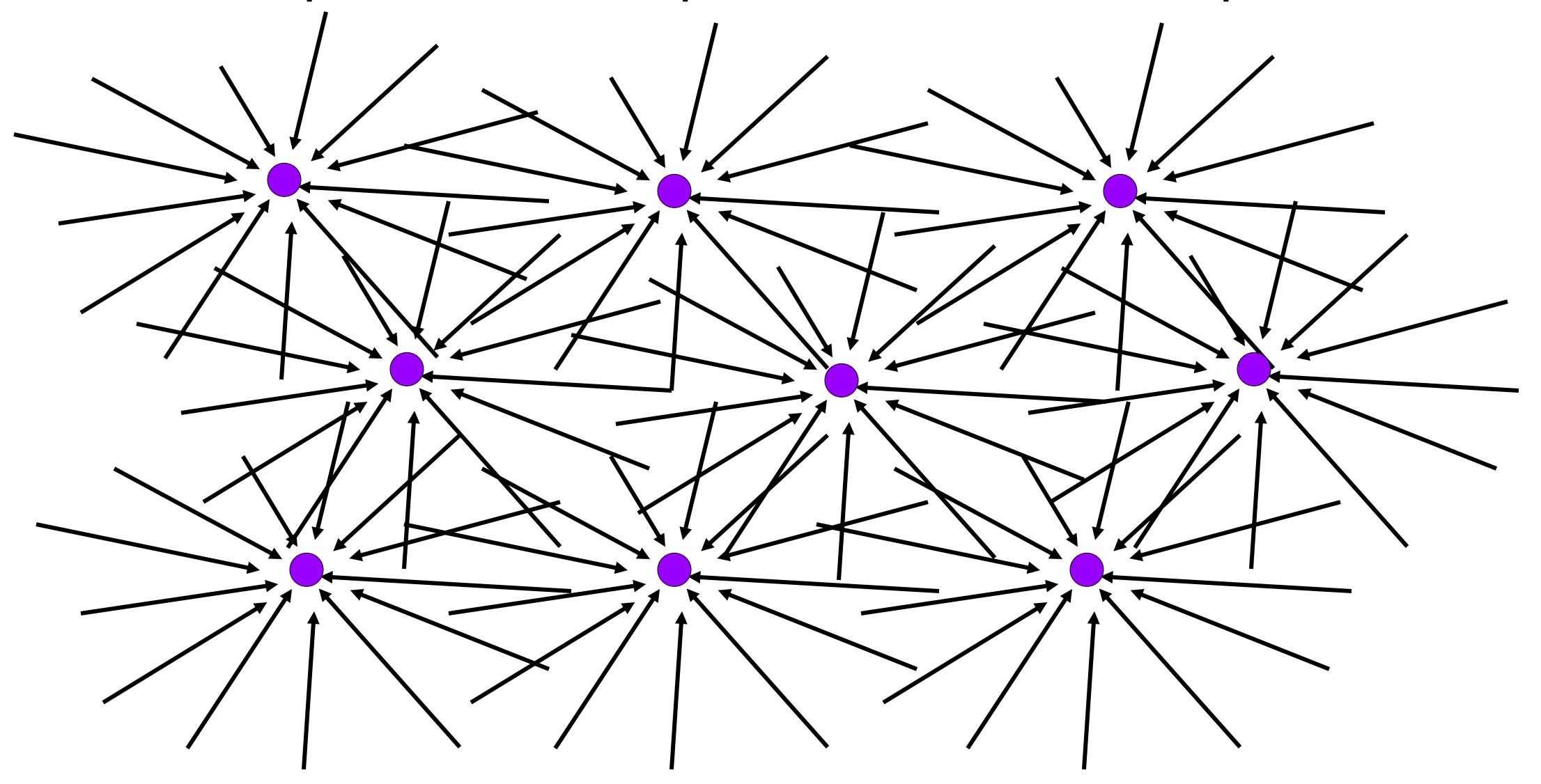
The Plenoptic Function



 $P(\theta,\phi,\lambda,t,V_X,V_Y,V_Z)$

- Can reconstruct every possible view, at every moment, from every position, at every wavelength
- Contains every photograph, every movie, everything that anyone has ever seen! it completely captures our visual reality! Not bad for a function...

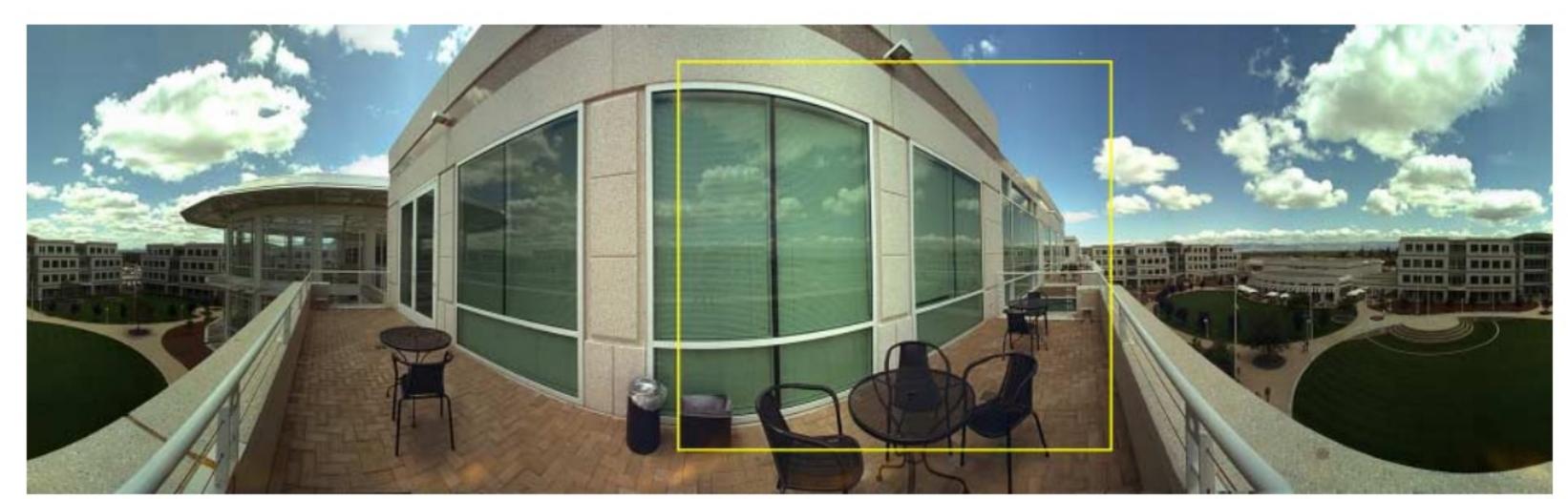
Sampling Plenoptic Function (top view)



Just lookup -- Quicktime VR

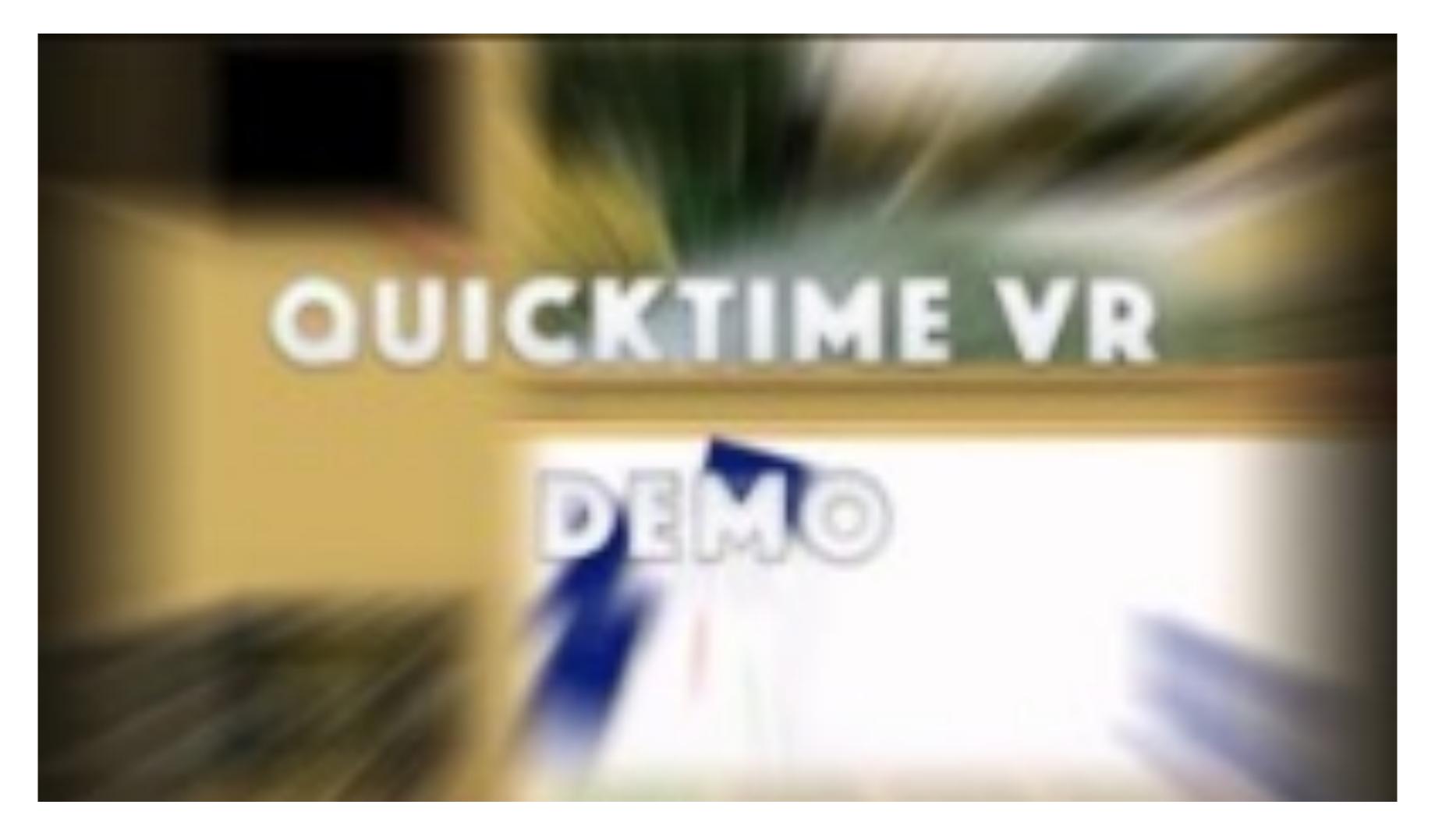
QuickTime VR

Panoramic image



Perspective Warp

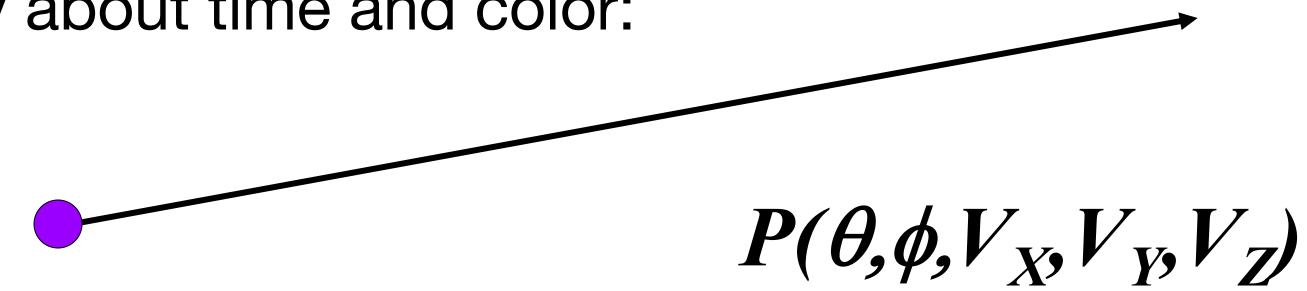
QuickTime VR



Quicktime VR: An image-based approach to virtual environment navigation. Shenchang Eric Chen. SIGGRAPH 1995

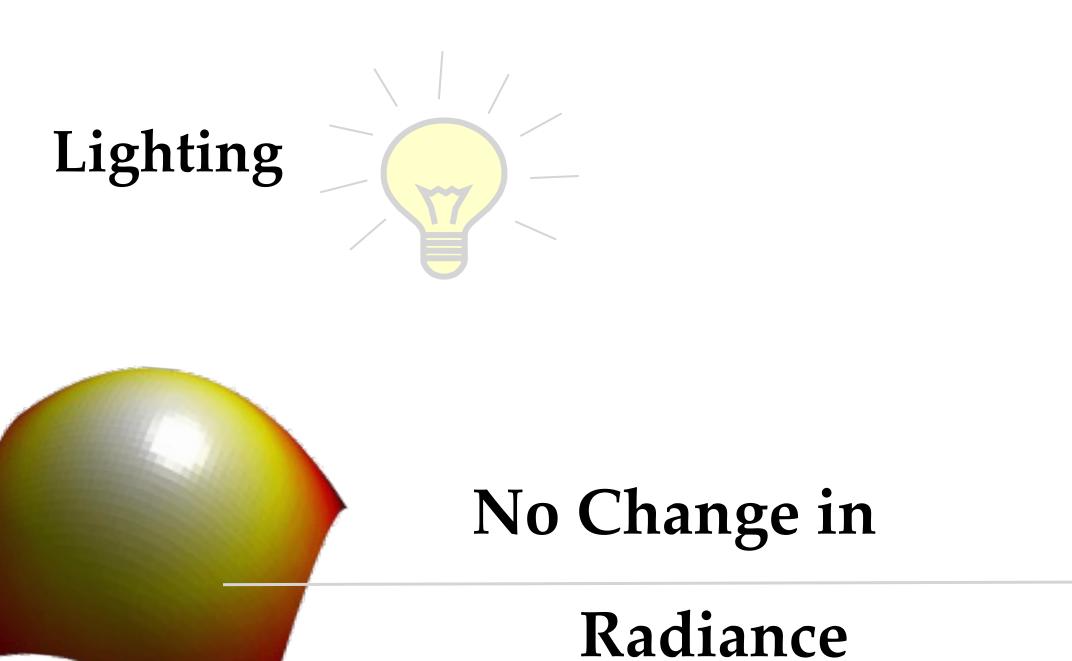
Ray

• Let's not worry about time and color:



- 5D
 - 3D position
 - 2D direction

How can we use this?

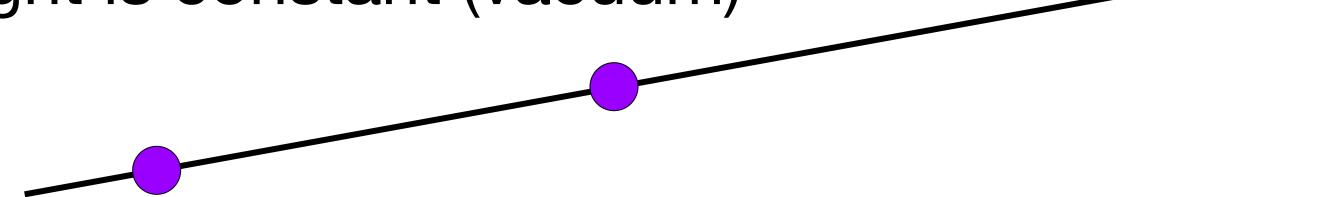


Surface

Camera

Ray Reuse

- Infinite line
- Assume light is constant (vacuum)



- 4D
 - 2D direction
 - 2D position
 - non-dispersive medium

Only need plenoptic surface

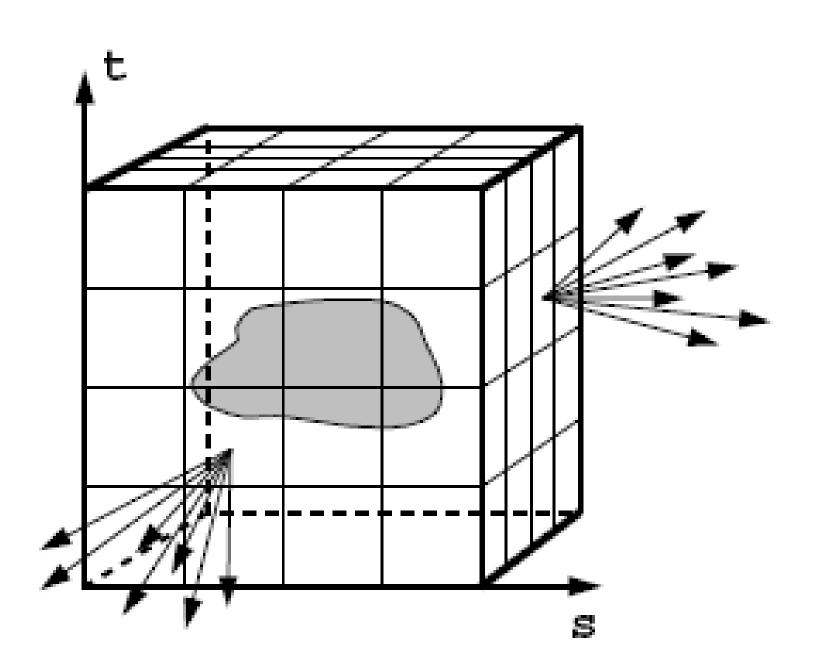
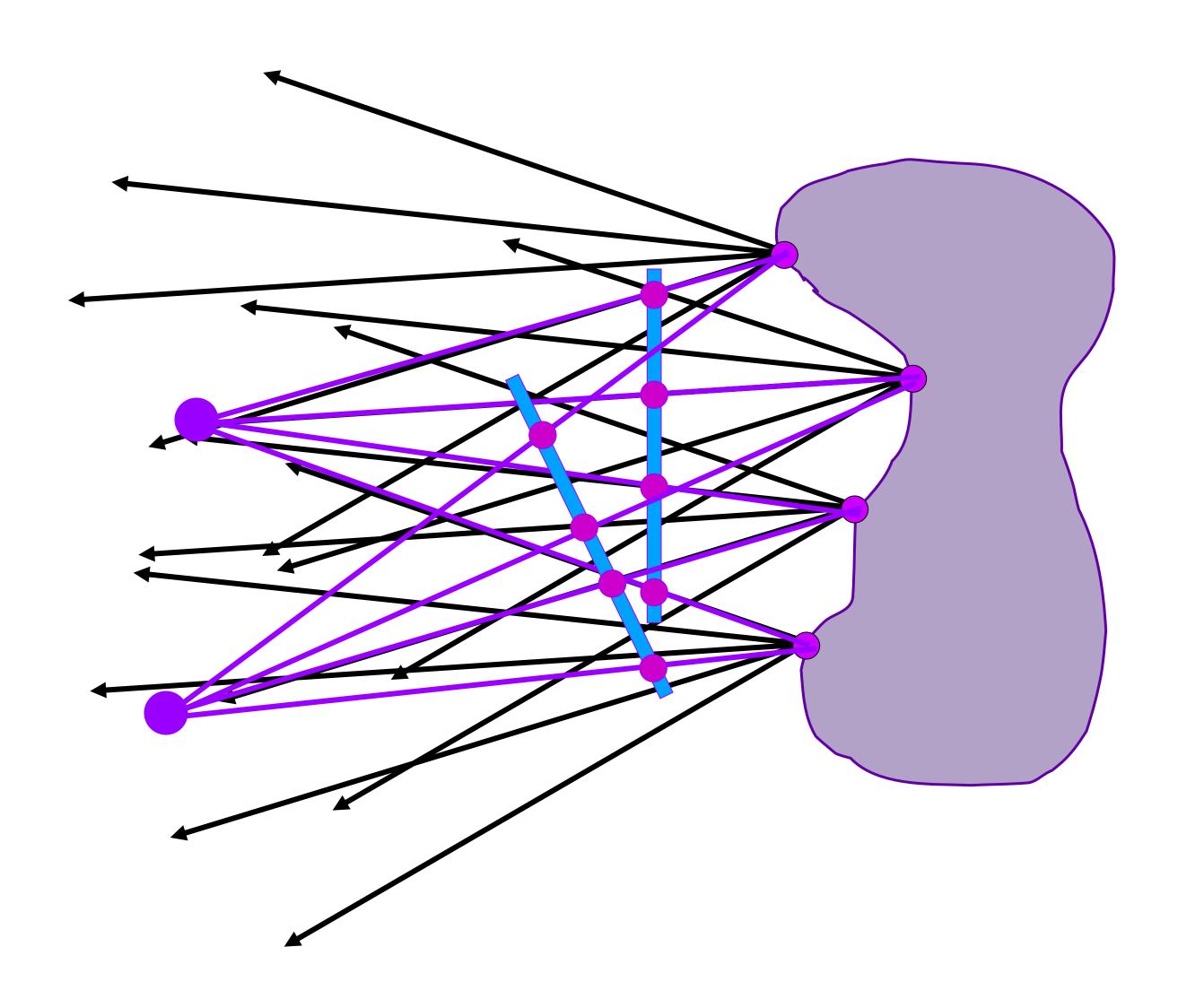


Figure 1: The surface of a cube holds all the radiance information due to the enclosed object.

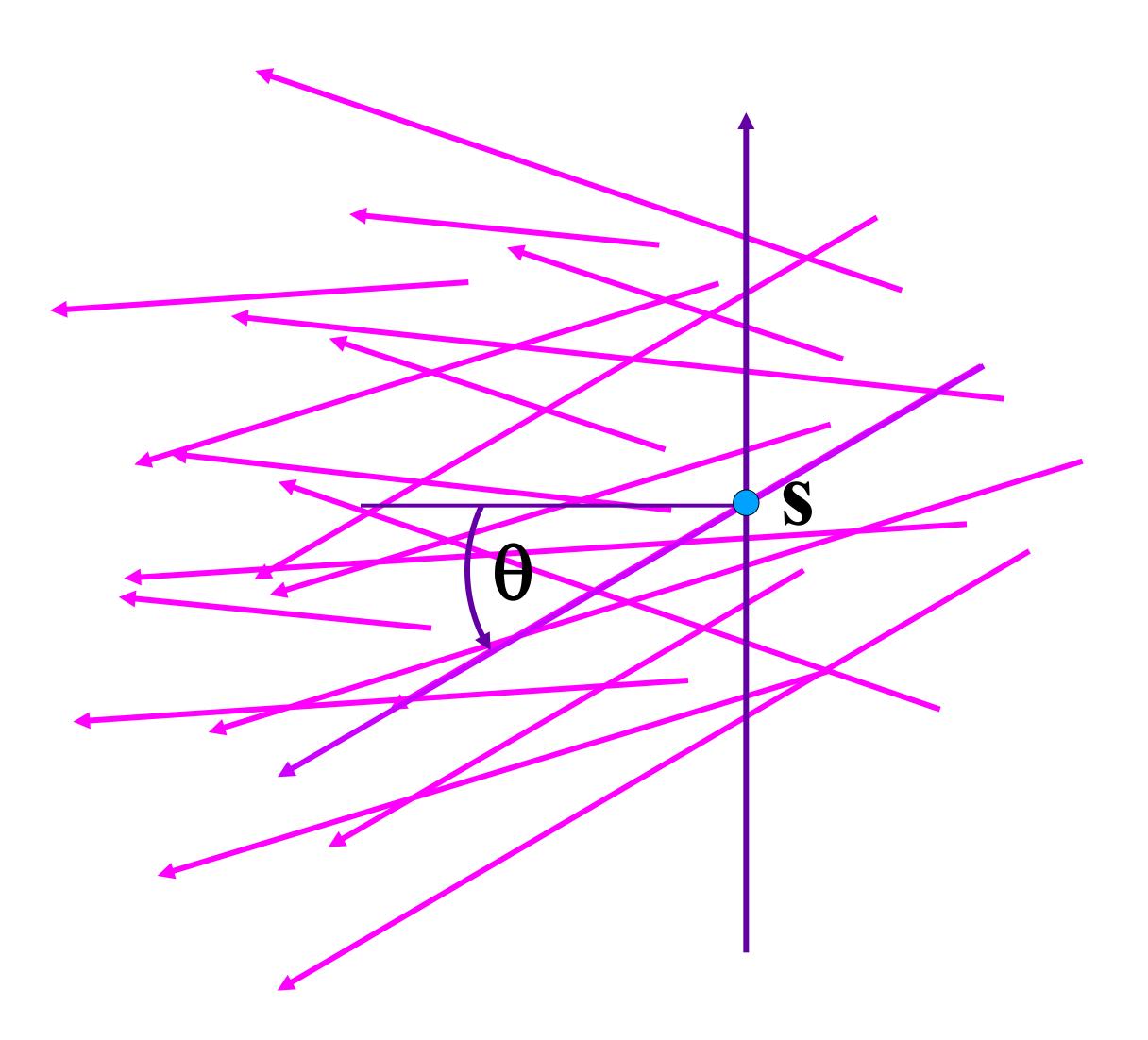
Synthesizing novel views



Lumigraph / Lightfield

 Outside convex space **Empty** Stuff

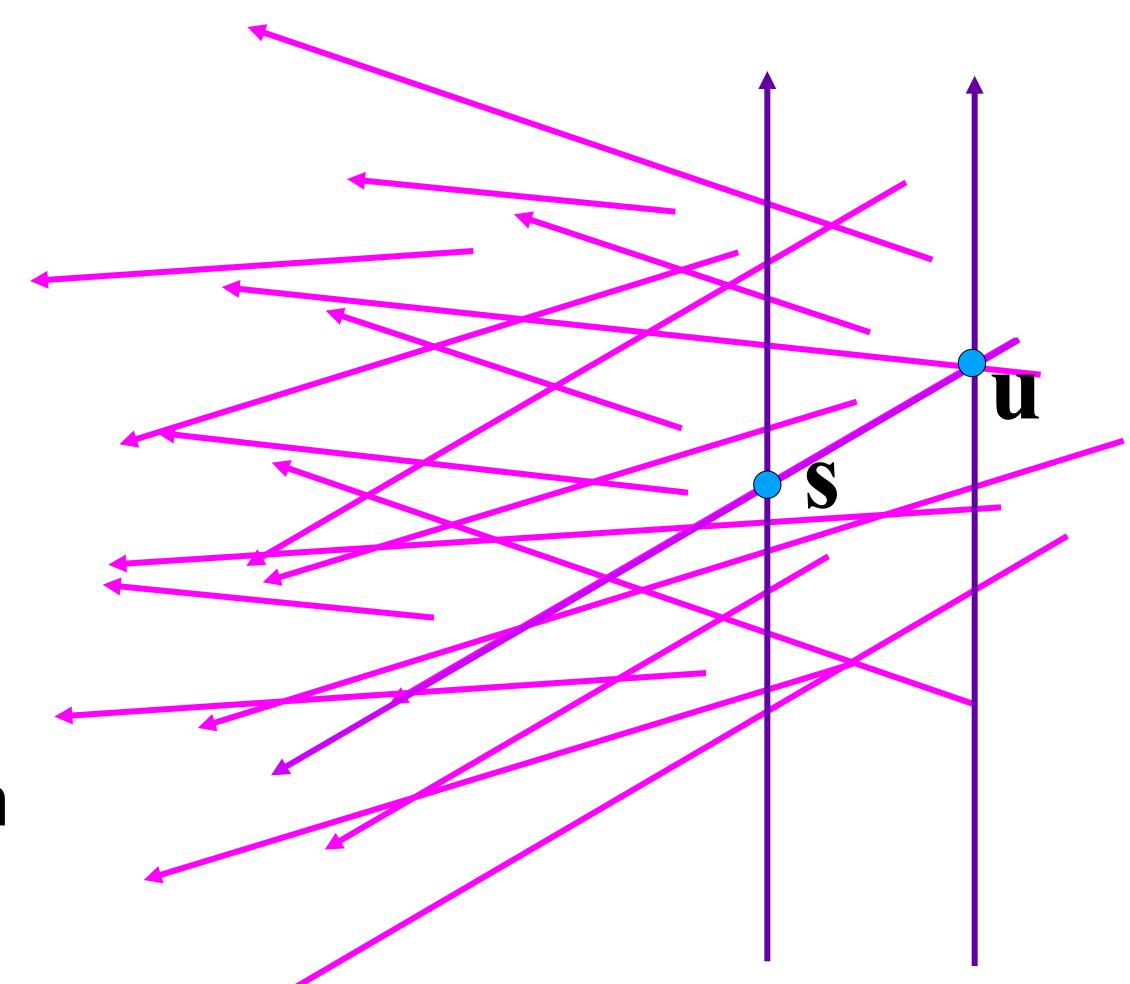
- 2D position
- 2D direction



2D position

2D position

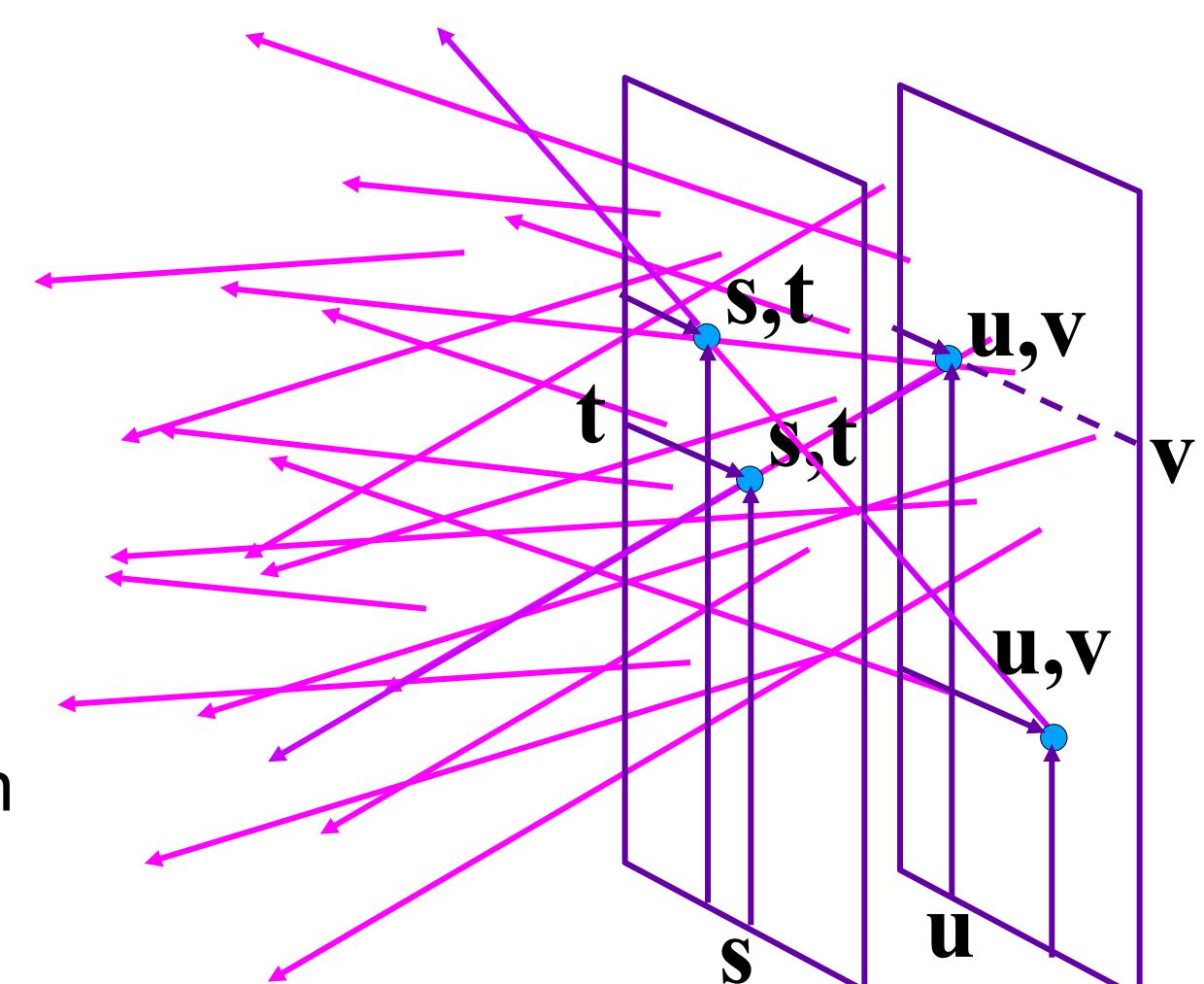
2 plane parameterization



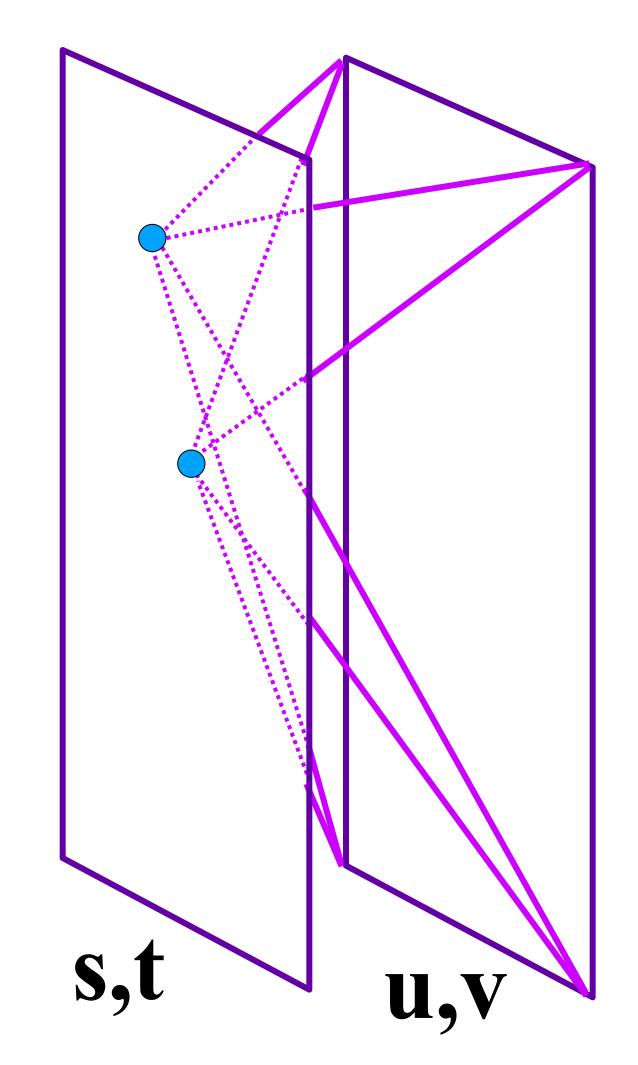
2D position

2D position

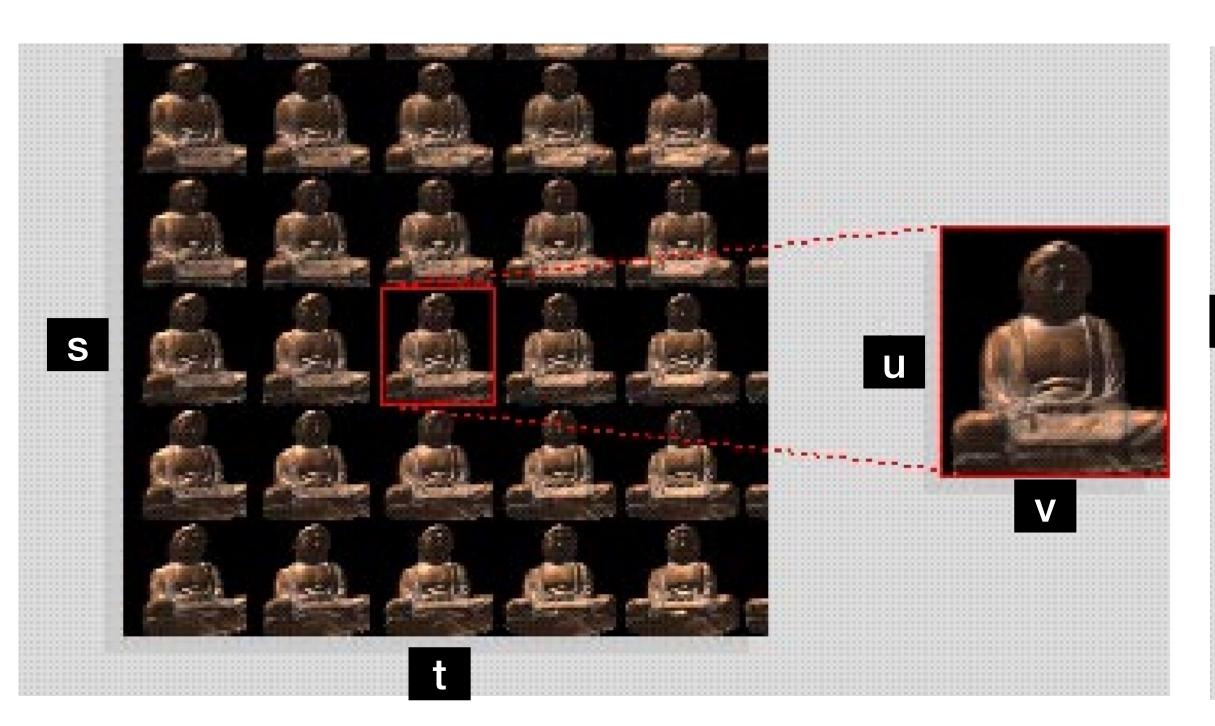
2 plane parameterization

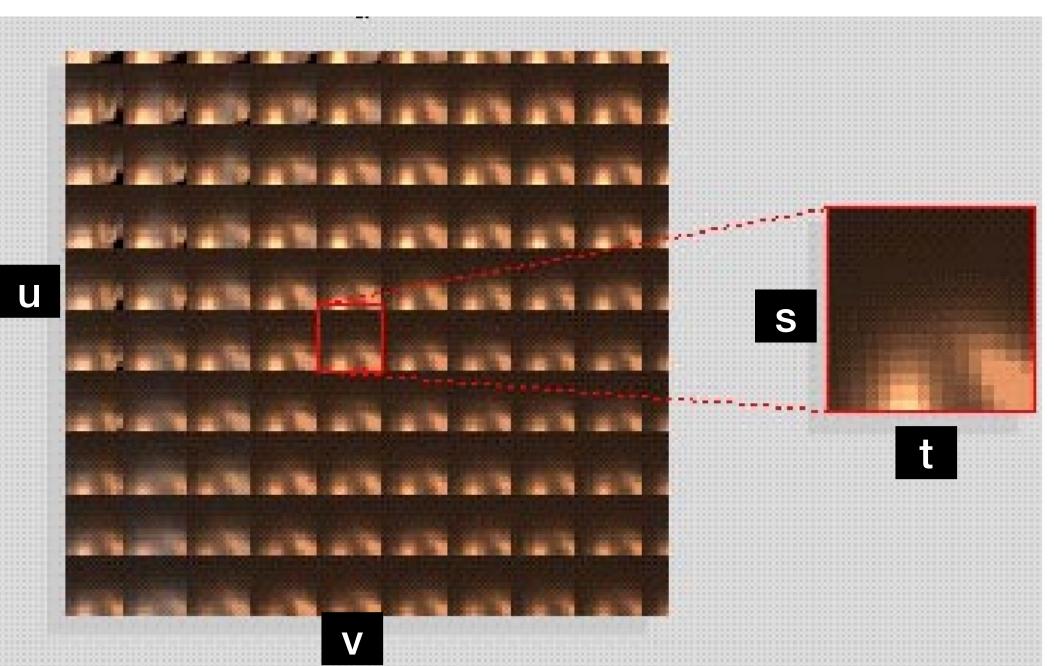


Hold s,t constant
Let u,v vary
An image



Lumigraph / Lightfield

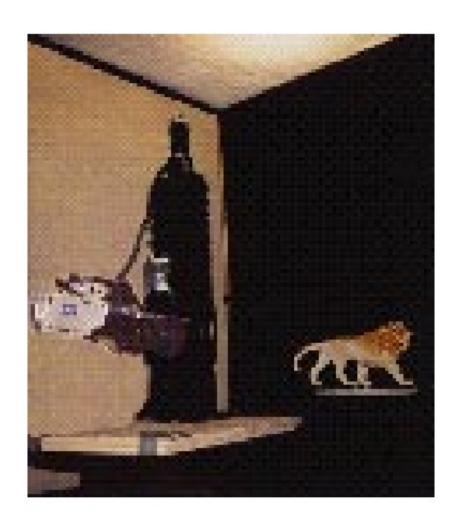


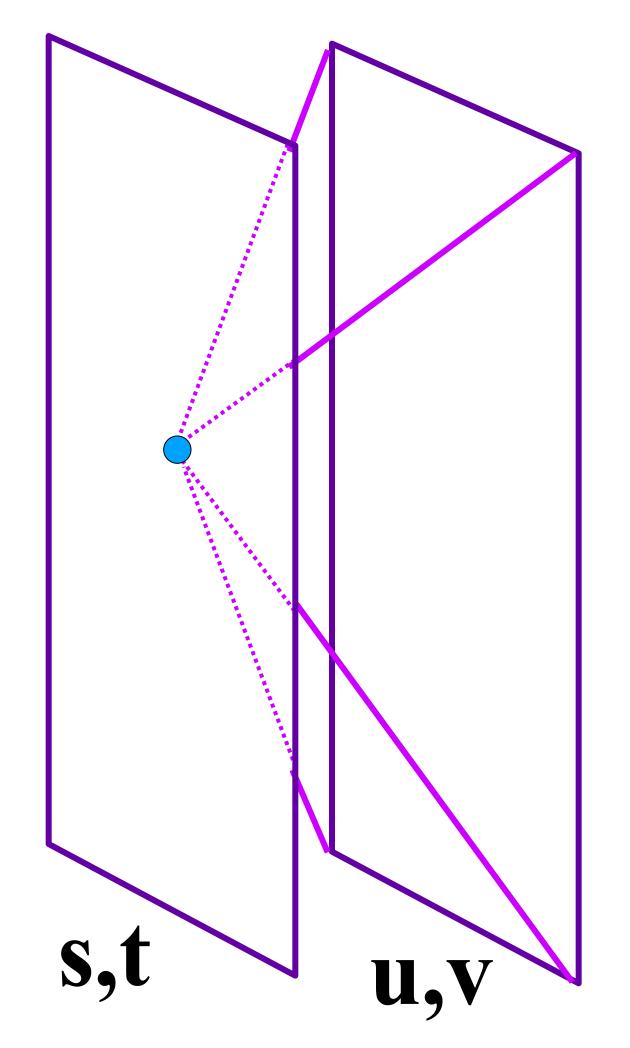


Capture Light Field

ldea 1

- Move camera carefully over s, t
 plane
- Grantry
 - –see Lightfield paper[Marc Levoy and Pat Hanrahan]





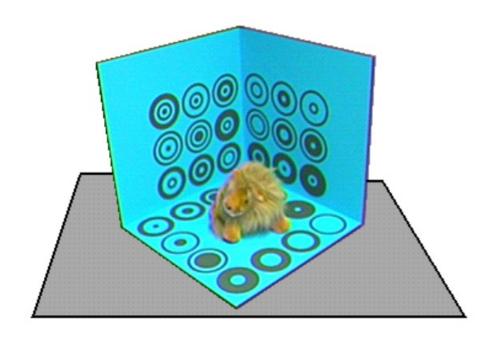
Capture Light Field

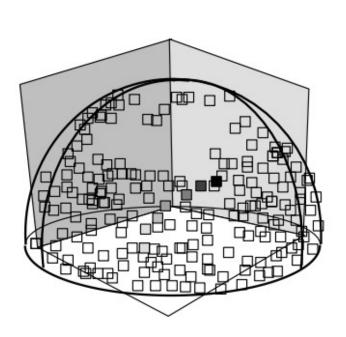
ldea 2

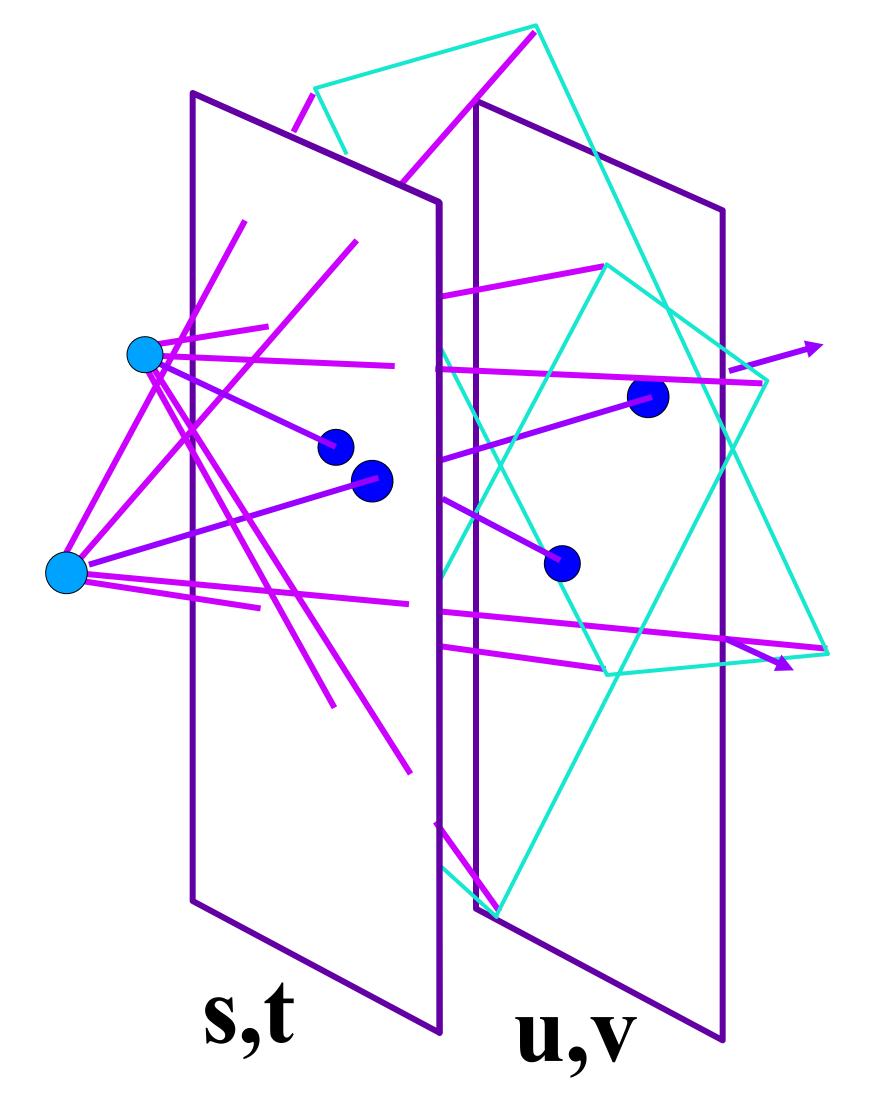
- Move camera anywhere
- Interpolation over irregular samples
 - -see Lumigraph paper

[Gortler, Grzeszczuk, Szeliski,

Cohen]







Slide by Rick Szeliski and Michael Cohen

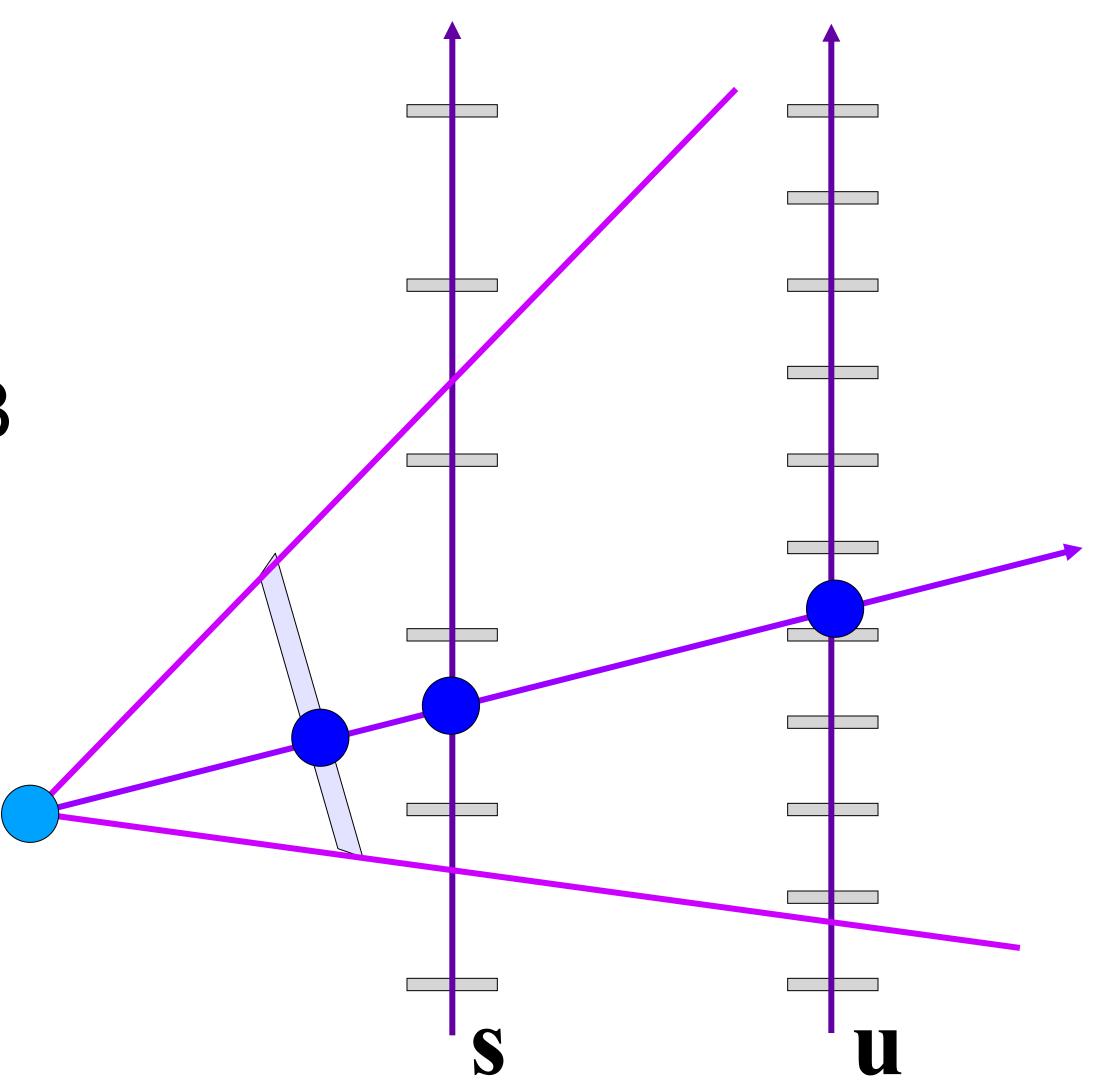
Novel View Synthesis

For each output pixel

- determine s,t,u,v
- •use closest discrete RGB

OR

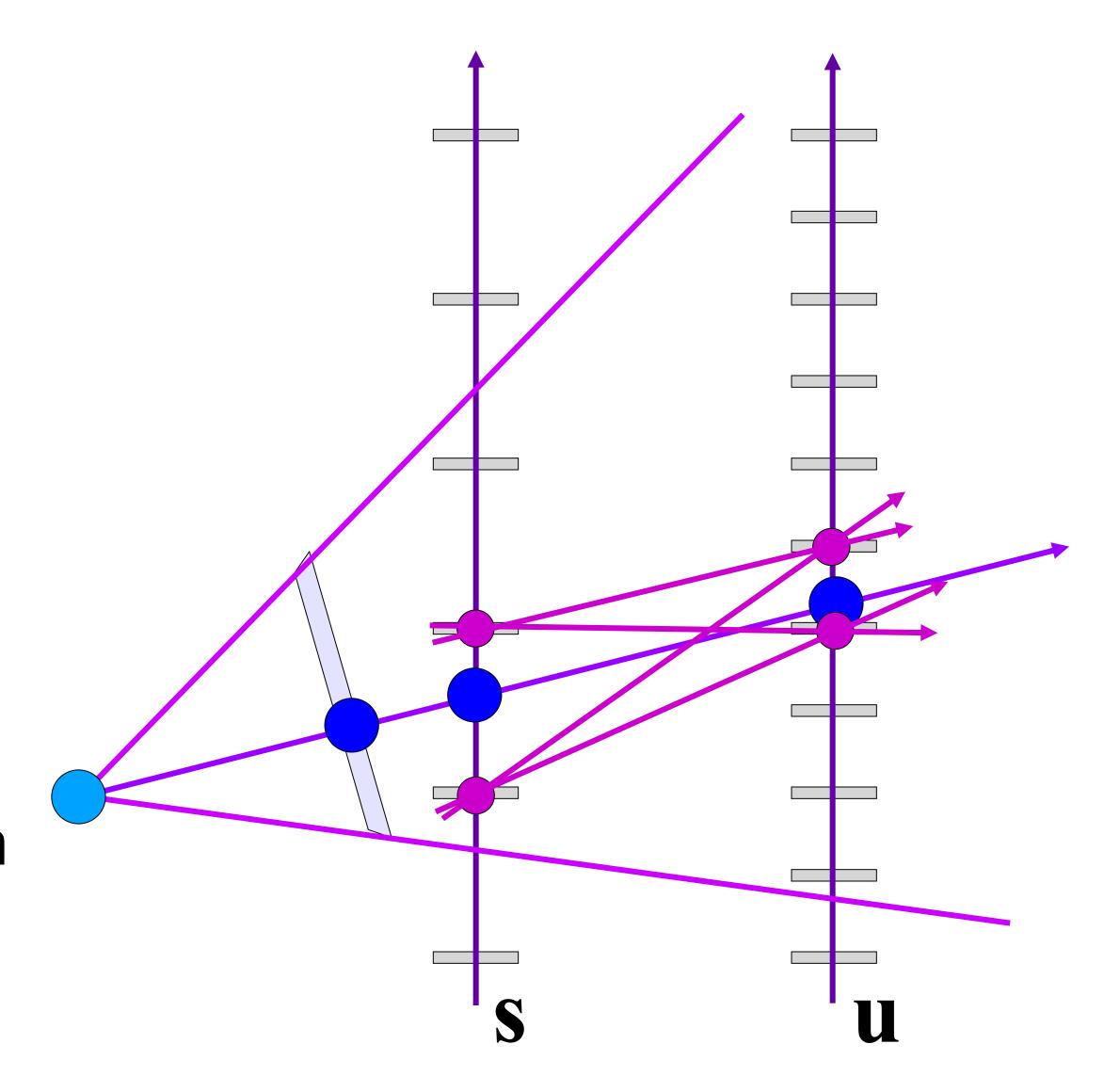
•interpolate near values



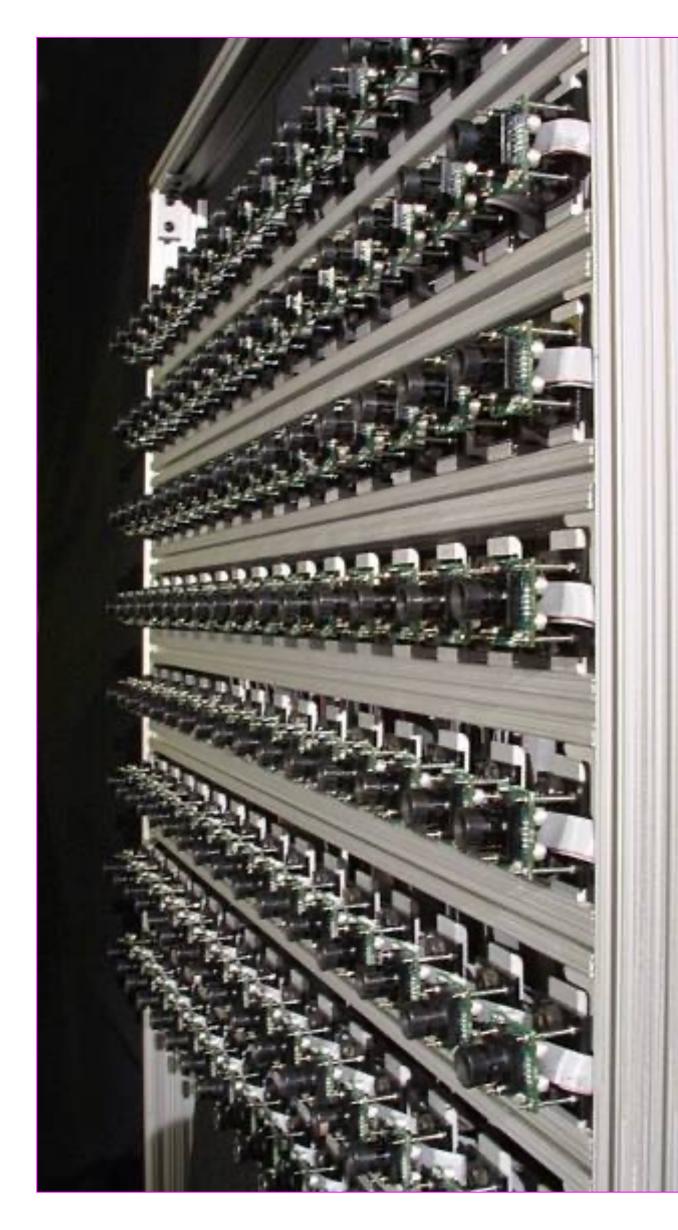
Interpolation

- Nearest neighbor
 - closest s
 - closest u
 - draw it

- Blend 16 nearest
 - quadrilinear interpolation



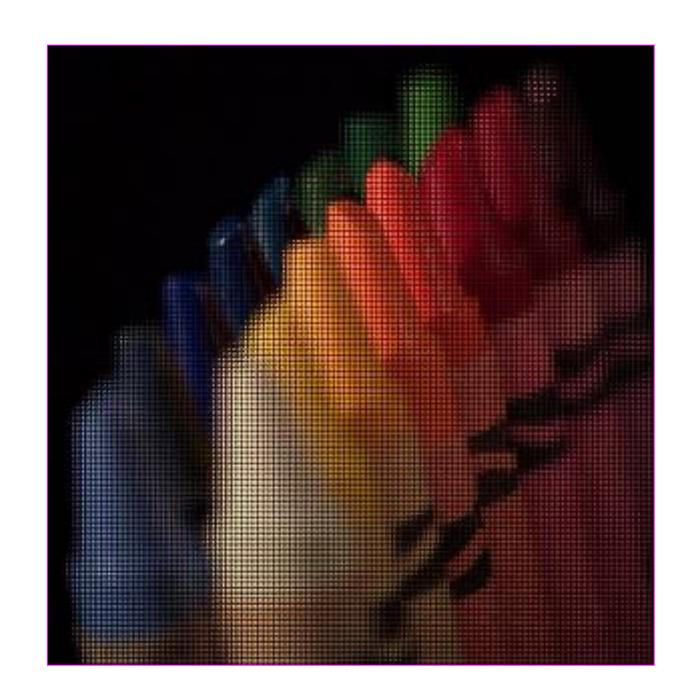
Stanford multi-camera array



- 640×480 pixels \times 30 fps \times 128 cameras
- synchronized timing
- continuous streaming
- flexible arrangement

Light field photography using a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan



Ren Ng

Light field photography using a handheld plenoptic camera

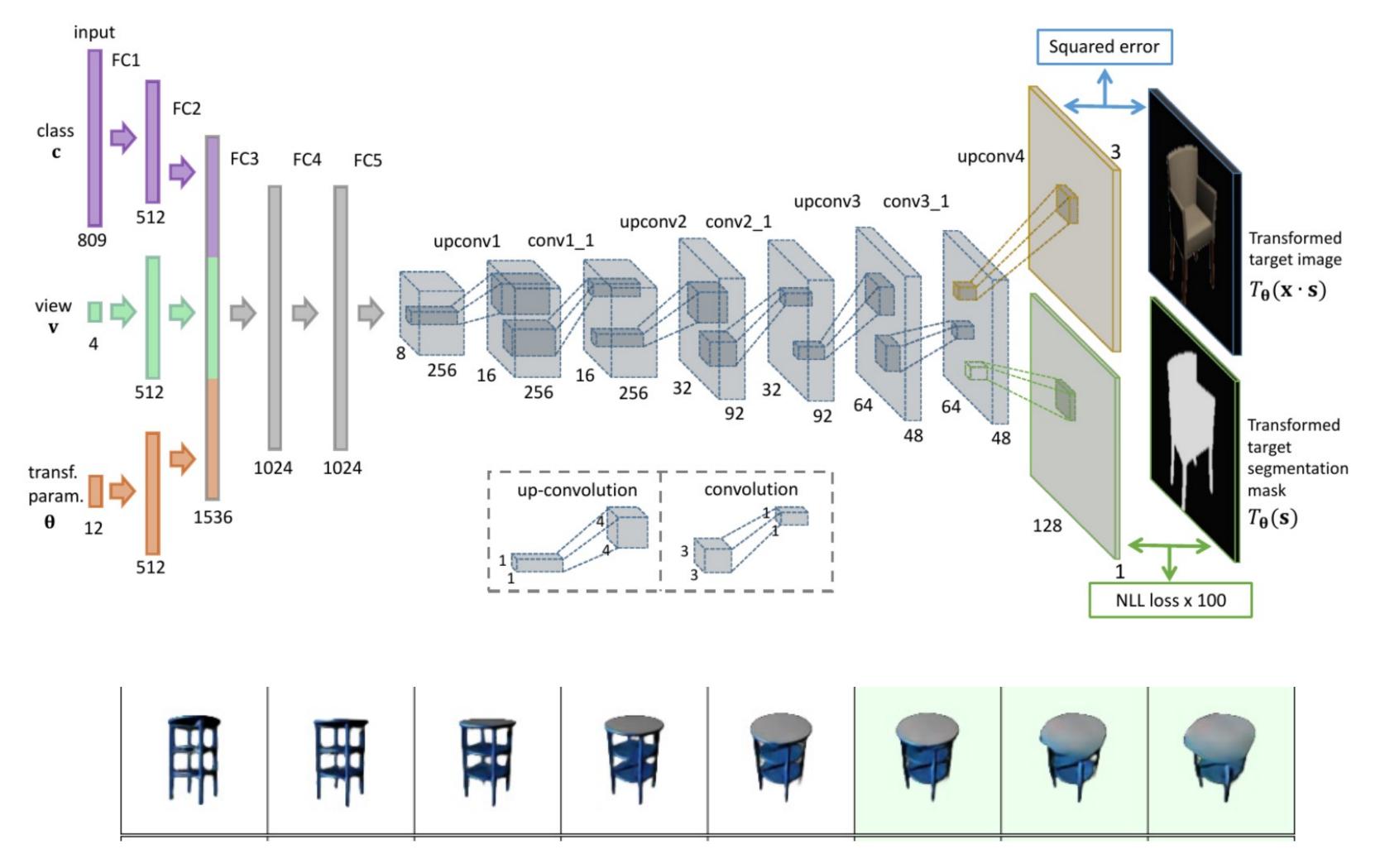
Refocusing

Novel View Synthesis

http://lightfield-forum.com/en/

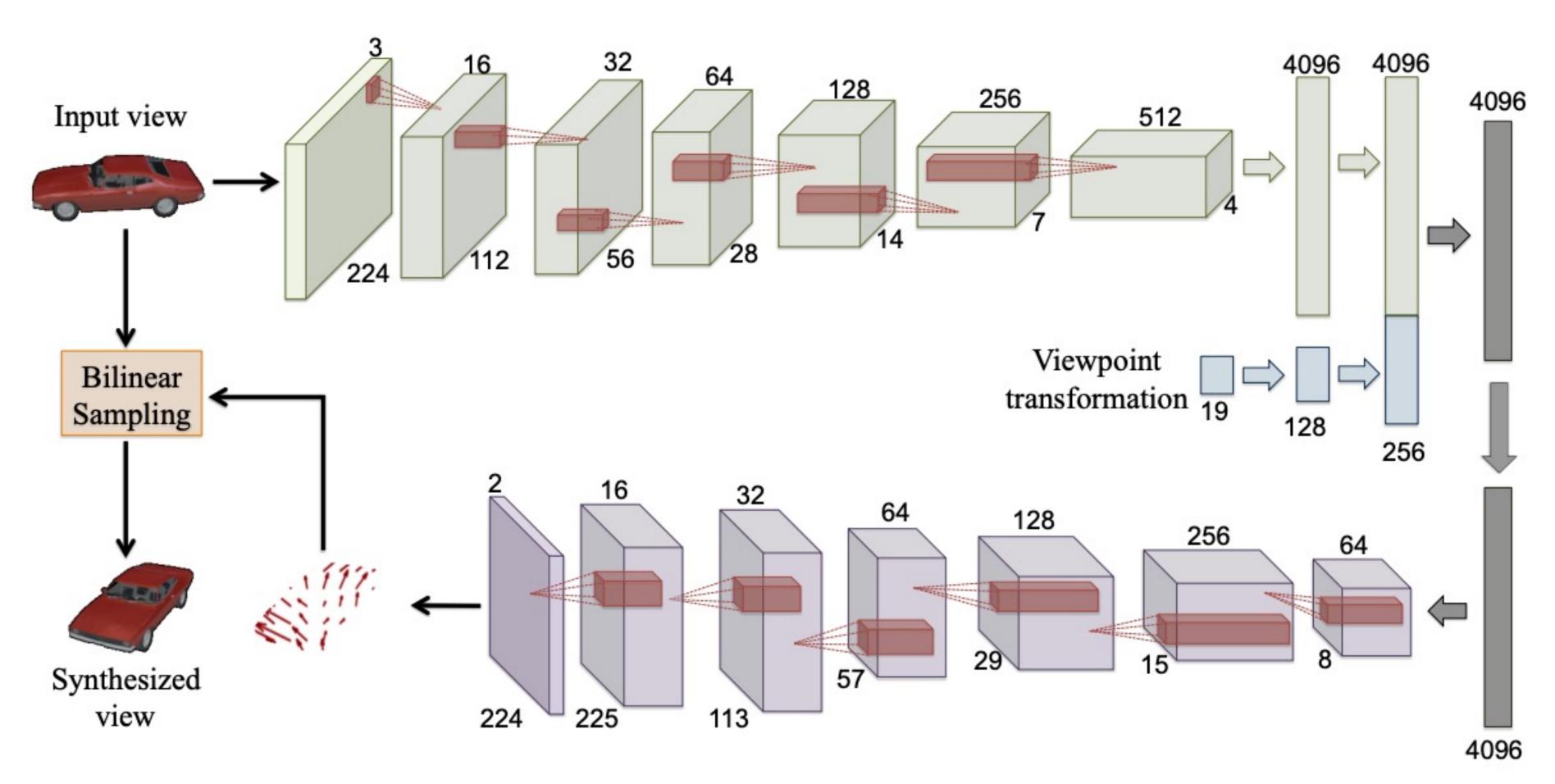
Deep Learning for View Synthesis

Generating Chairs with CNNs



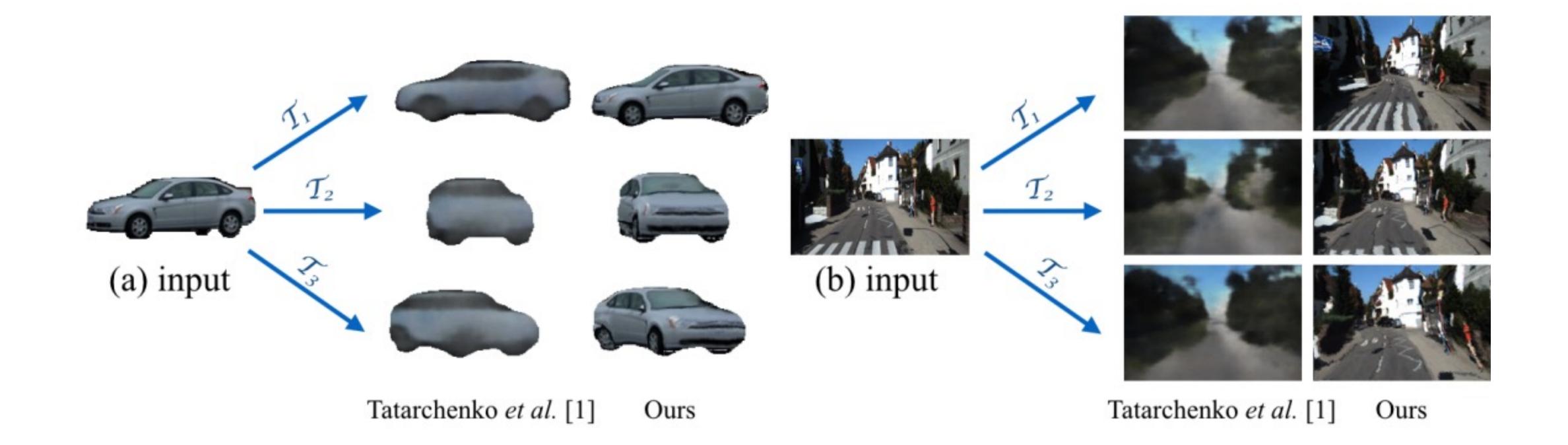
Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

View Synthesis with Dense Correspondence



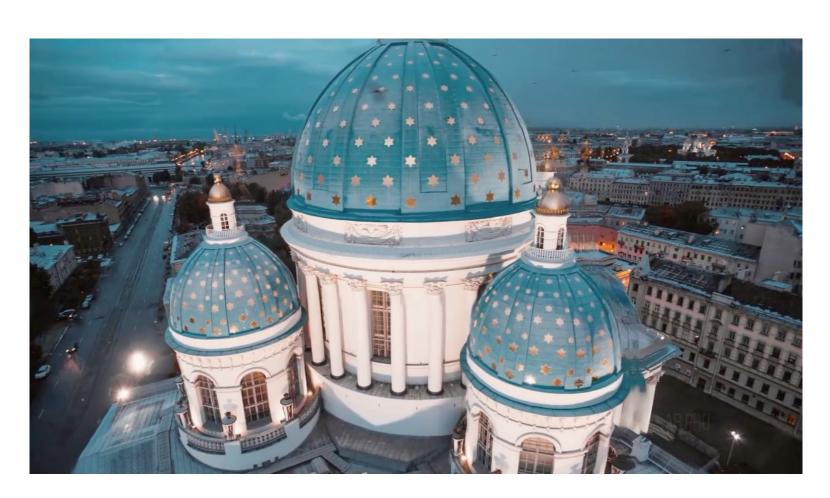
View Synthesis by Appearance Flow Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros ECCV 2016

View Synthesis with Dense Correspondence



View Synthesis by Appearance Flow
Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros
ECCV 2016

Lots of recent progress using deep learning for view synthesis!



Choi ICCV 2019

Flynn CVPR 2019

The following slides deck is from

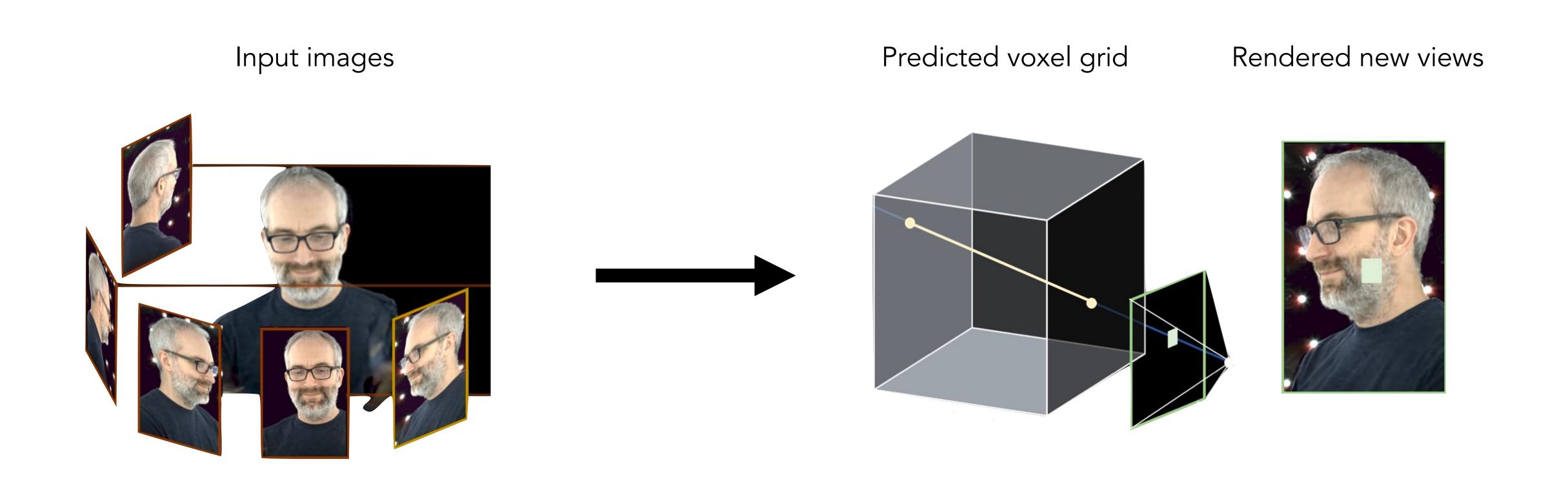
Ben Mildenhall*, Pratul Srinivasan*, Matthew Tancik*, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

The problem of novel view interpolation

Inputs: sparsely sampled images of scene

Outputs: new views of same scene

Very successful approach: predict 3D voxel RGB-alpha grid



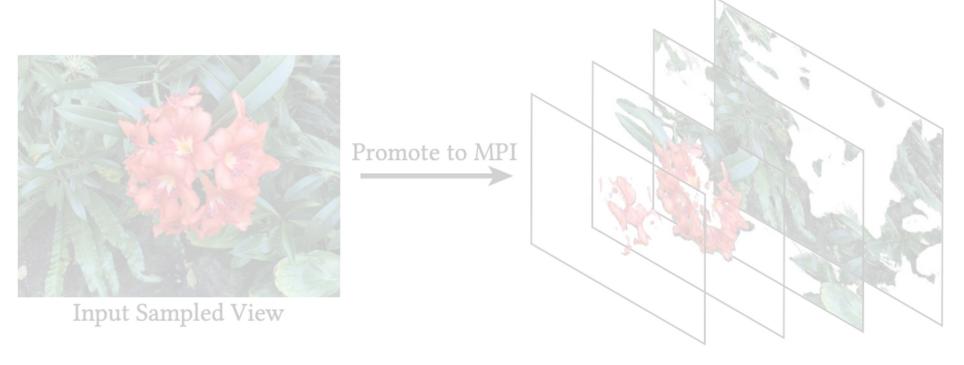
Soft 3D

(Penner & Zhang 2017)
Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

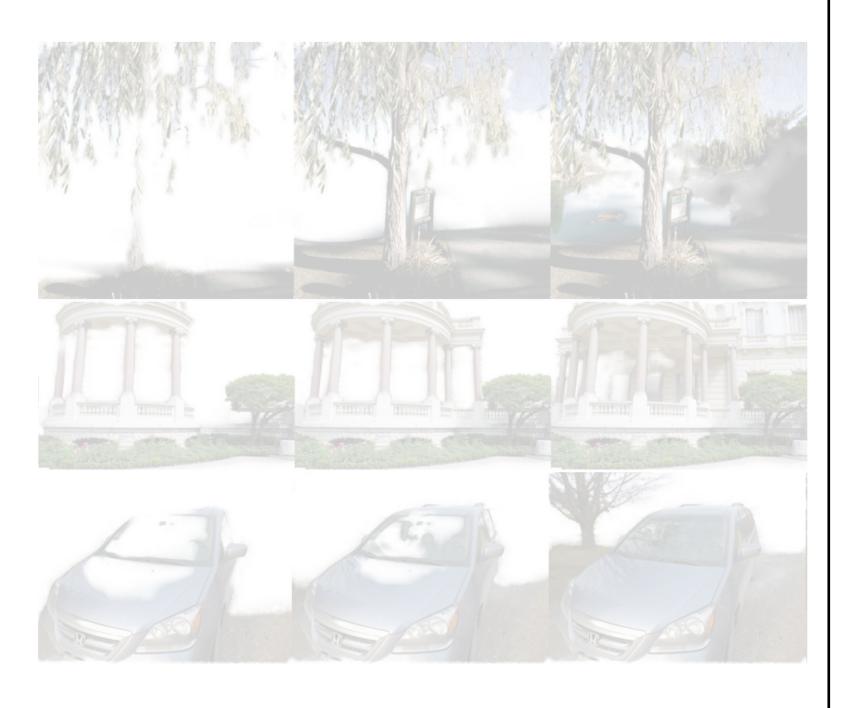


Neural Volumes

(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

Soft 3D

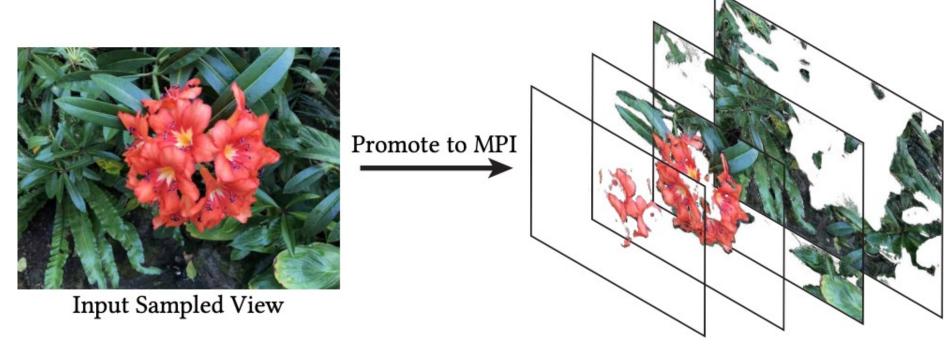
(Penner & Zhang 2017)
Culmination of non-deep stereo matching techniques



Multiplane image methods

Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

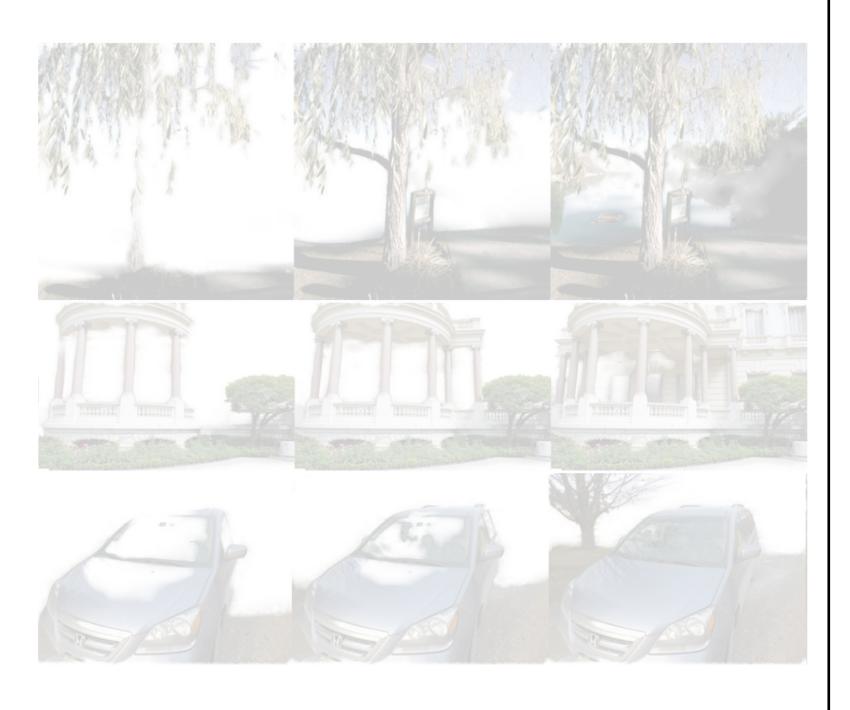


Neural Volumes

(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

Soft 3D

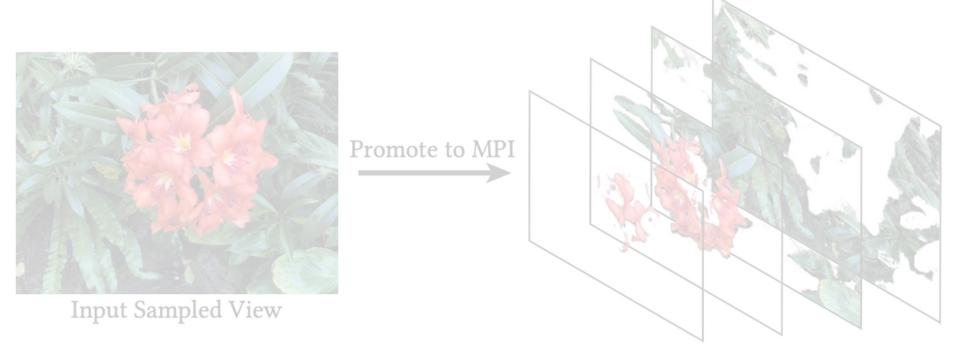
(Penner & Zhang 2017)
Culmination of non-deep stereo matching techniques



Multiplane image methods

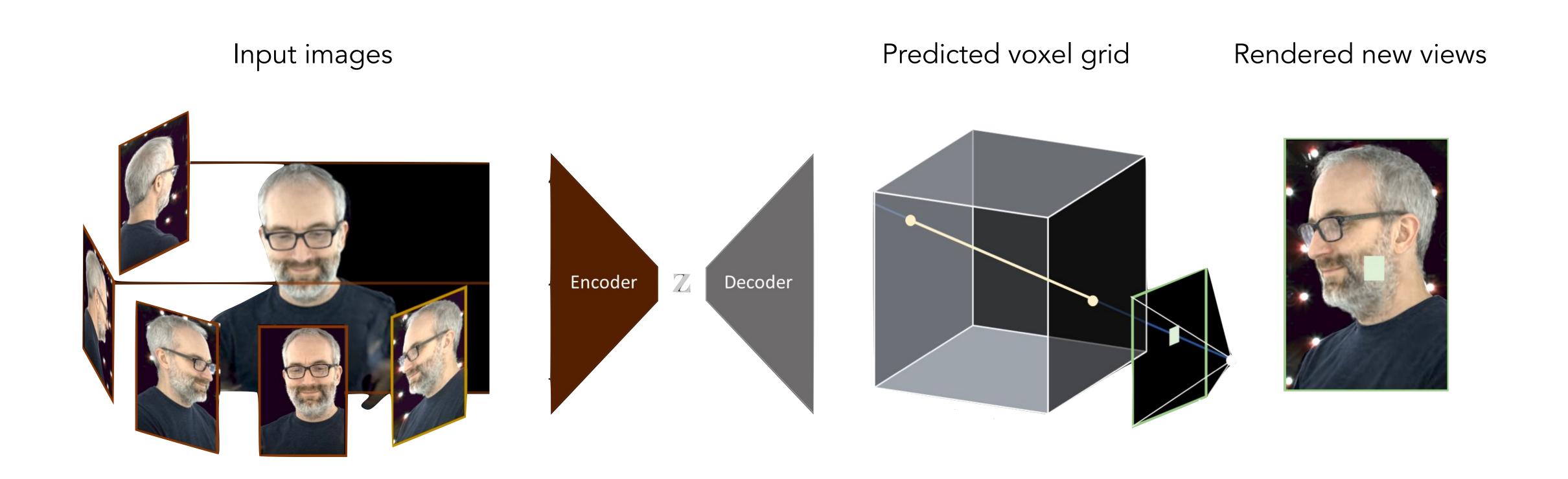
Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries... (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out



Neural Volumes

(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN



Soft 3D

(Penner & Zhang 2017)
Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018) Pushing the Boundaries... (Srinivasan et al. 2019) Local Light Field Fusion (Mildenhall et al. 2019) DeepView (Flynn et al. 2019) Single-View... (Tucker & Snavely 2020)

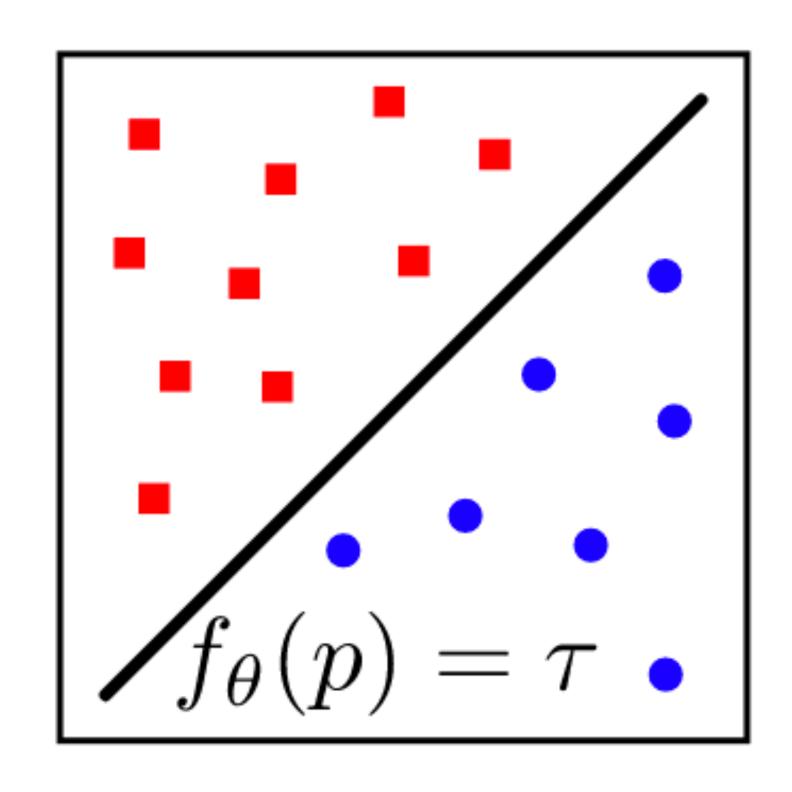
Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

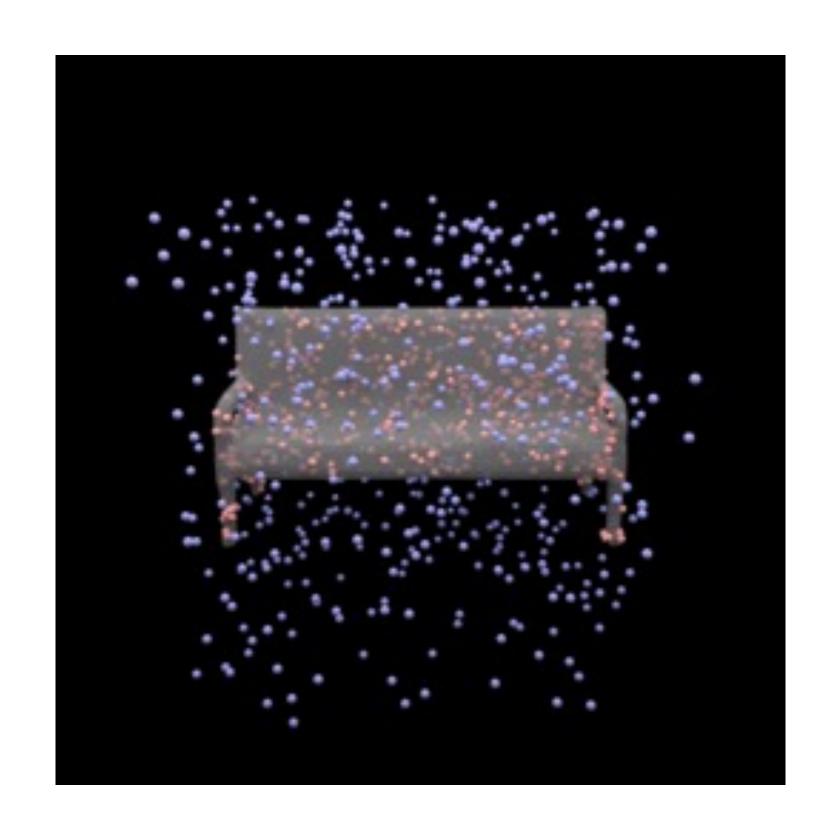
Neural Volumes

(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA volume, regularized by a 3D CNN

+ Great rendering model: good for optimization - Horrible storage requirements (1-10 GB)

Neural networks as a continuous shape representation

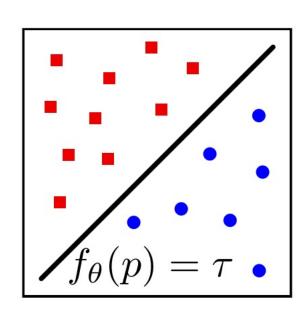




Neural networks as a continuous shape representation

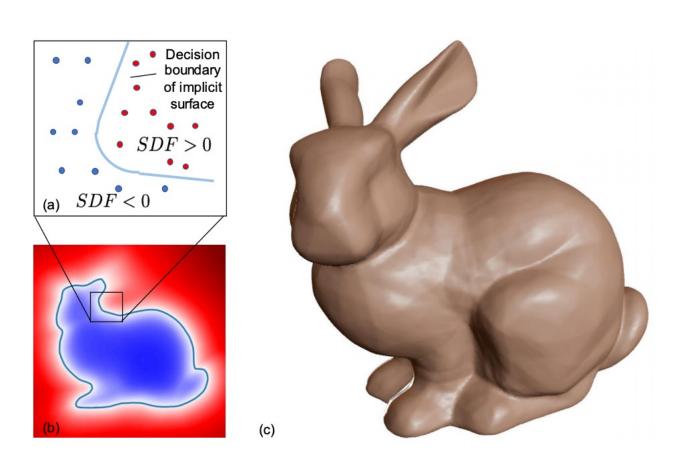
Occupancy Networks

(Mescheder et al. 2019) $(x, y, z) \rightarrow occupancy$



DeepSDF

(Park et al. 2019) $(x, y, z) \rightarrow distance$



Scene Representation Networks

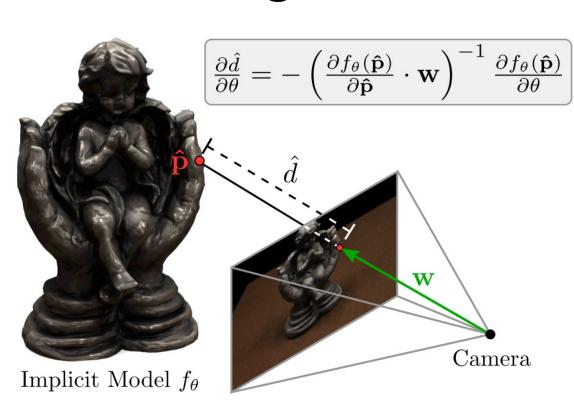
(Sitzmann et al. 2019)

 $(x, y, z) \rightarrow latent vec. (color, dist.)$

Differentiable Volumetric Rendering

(Niemeyer et al. 2020)

 $(x, y, z) \rightarrow color, occ.$



Neural networks as a shape representation

DeepSDF

(Park et al. 2019) $(x, y, z) \rightarrow distance$

Occupancy Networks

(Mescheder et al. 2019) $(x, y, z) \rightarrow occupancy$

- Limited rendering model: difficult to optimize + Highly compressible (1-10 MB)

Scene Representation Networks

(Sitzmann et al. 2019) $(x, y, z) \rightarrow latent vec. (color, dist.)$

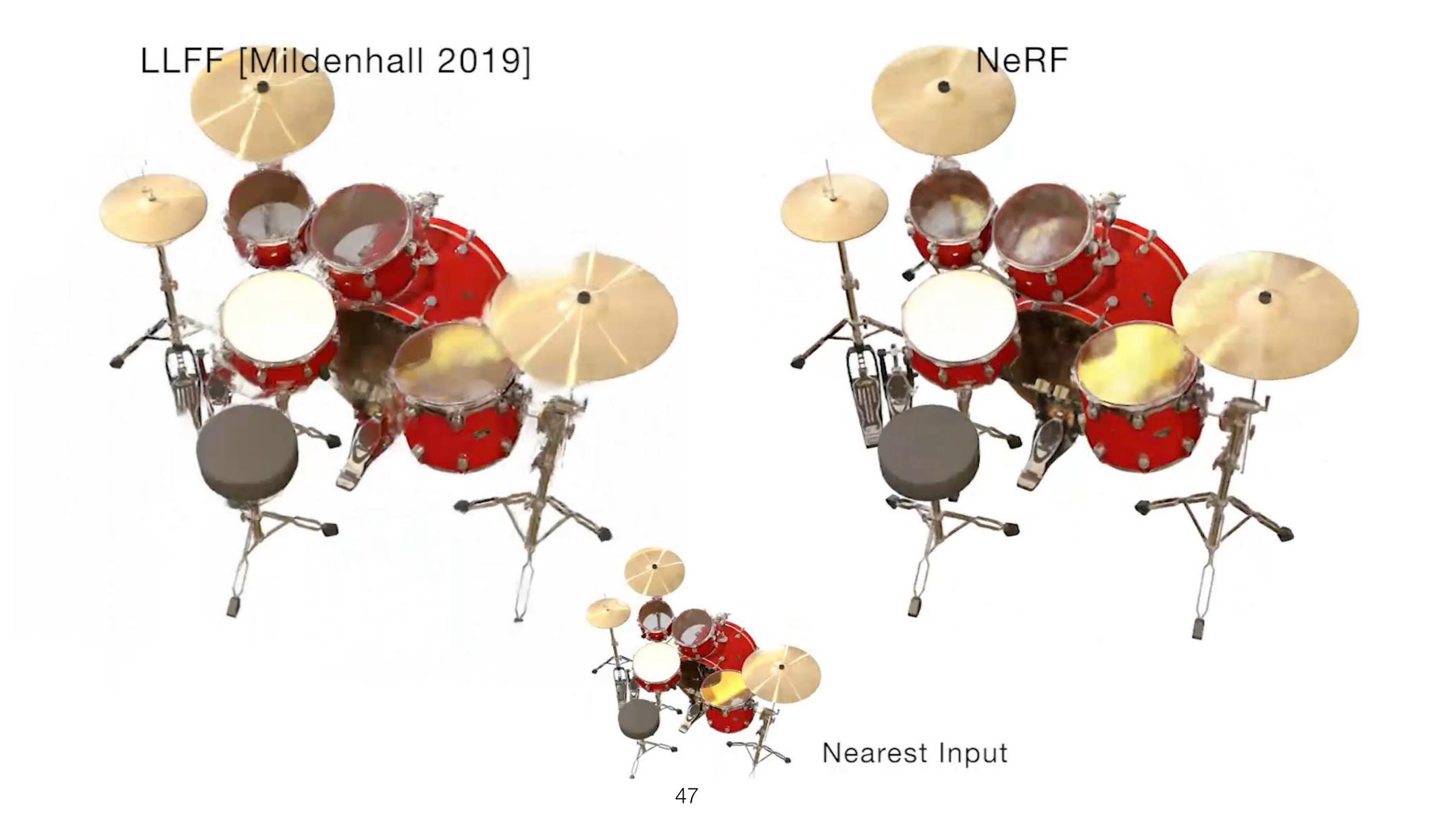
Differentiable Volumetric Rendering

(Niemeyer et al. 2020)

 $(x, y, z) \rightarrow color, occ.$

NeRF (neural radiance fields): Neural networks as a volume representation, using volume rendering to do view synthesis. $(x, y, z, \theta, \phi) \rightarrow color, opacity$

NeRF achieves state-of-the-art results on an extremely difficult problem



NeRF achieves state-of-the-art results on an extremely difficult problem

NeRF achieves state-of-the-art results on an extremely difficult problem

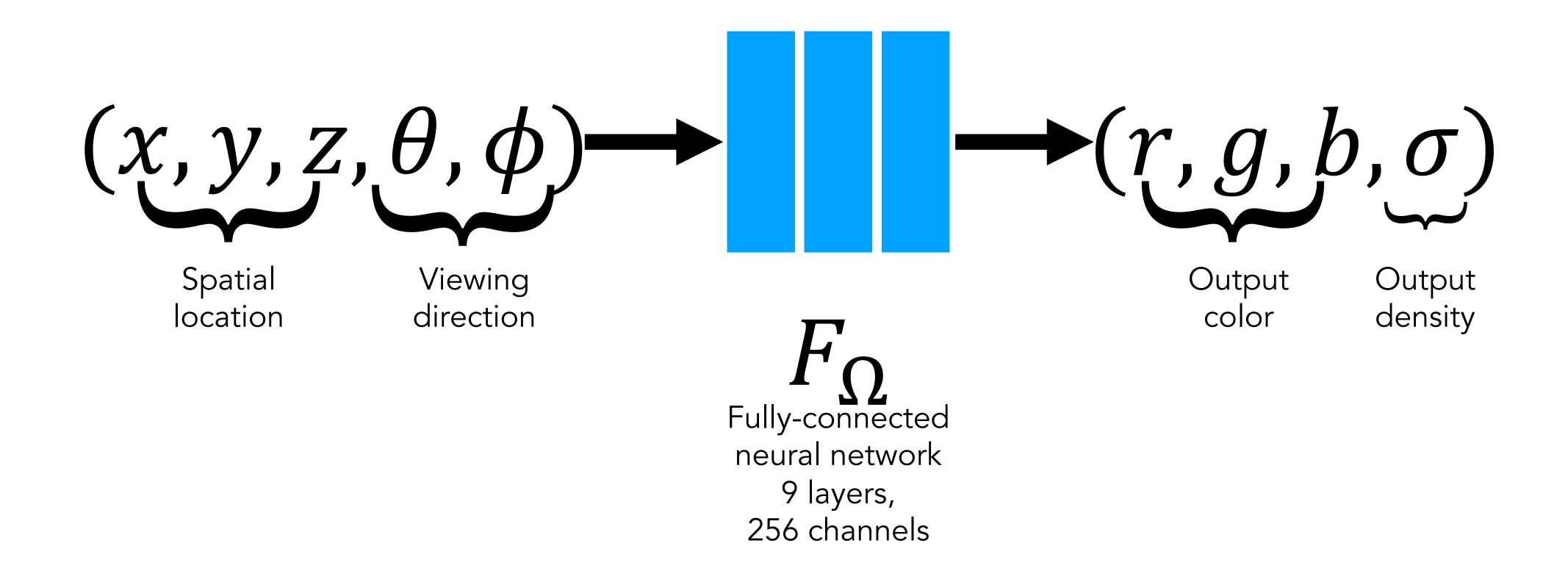
Key points

- ► Continuous neural network as a volumetric scene representation (5D = xyz + direction)
- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)
- One extra trick for passing coordinates into network to get high frequency details

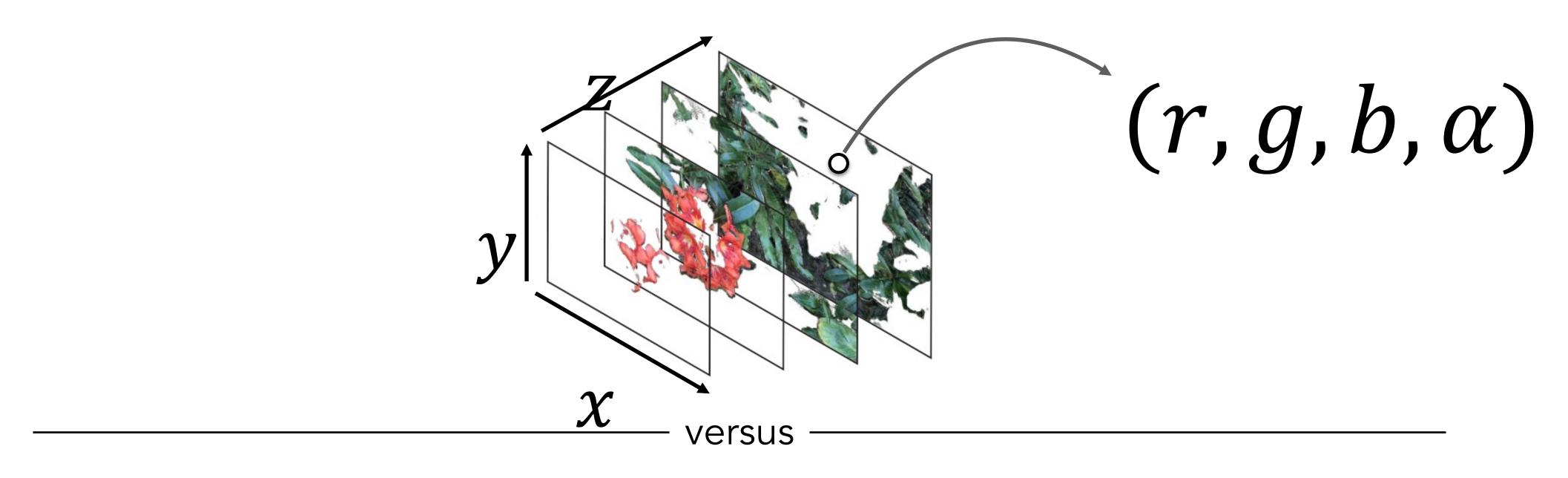
Key points

- ► Continuous neural network as a volumetric scene representation (5D = xyz + direction)
- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)
- One extra trick for passing coordinates into network to get high frequency details

Representing a scene as a continuous 5D function



Neural network replaces large N-d array

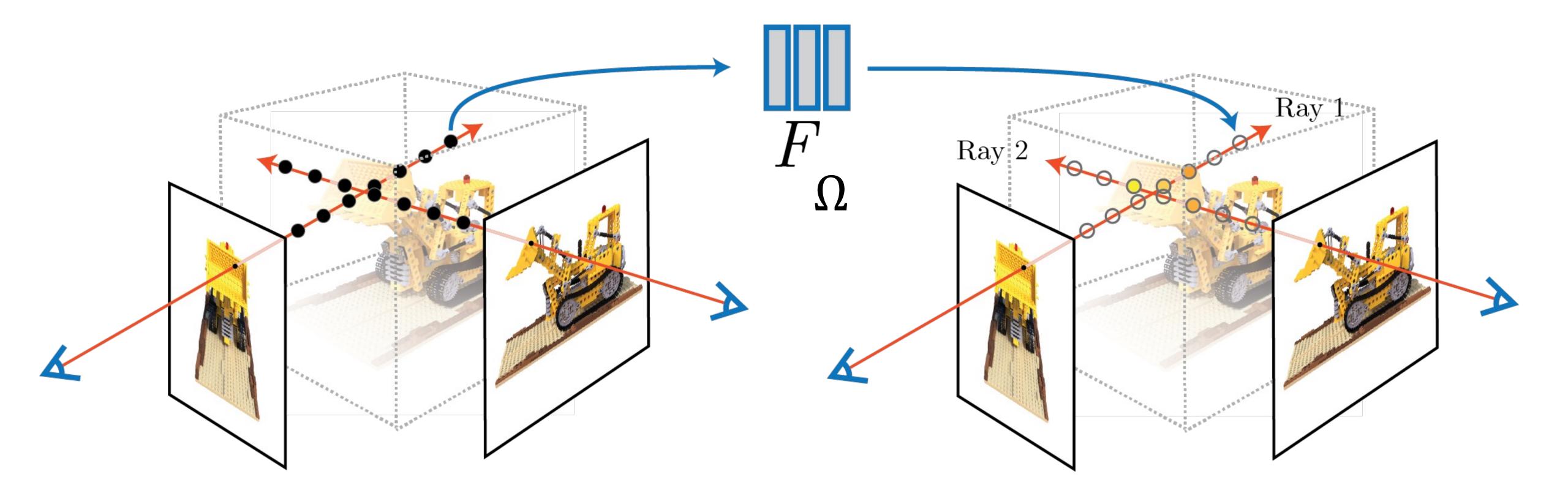


$$(x, y, z, \theta, \phi) \longrightarrow (r, g, b, \sigma)$$

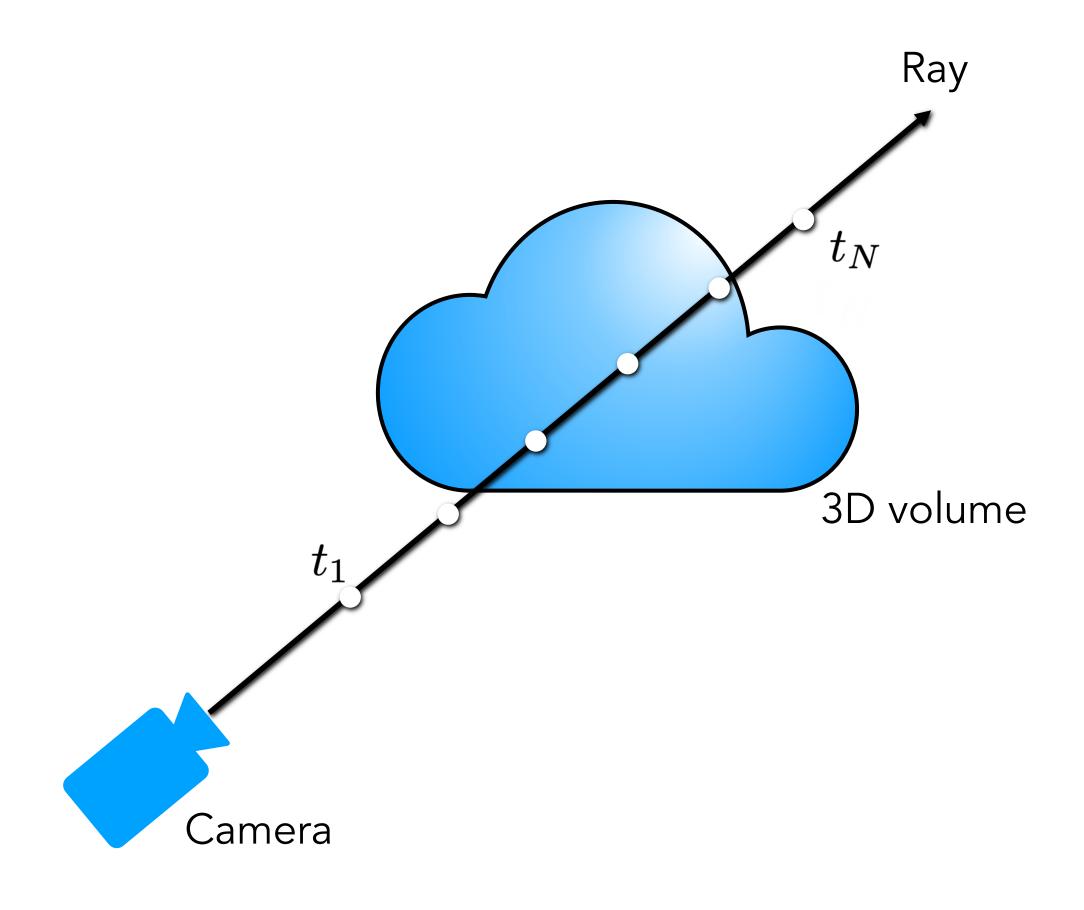
$$F_{\Omega}$$

Key points

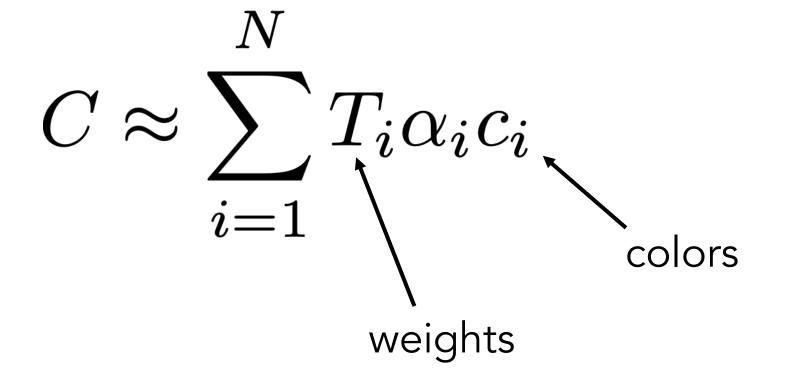
- ► Continuous neural network as a volumetric scene representation (5D = xyz + direction)
- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)
- One extra trick for passing coordinates into network to get high frequency details

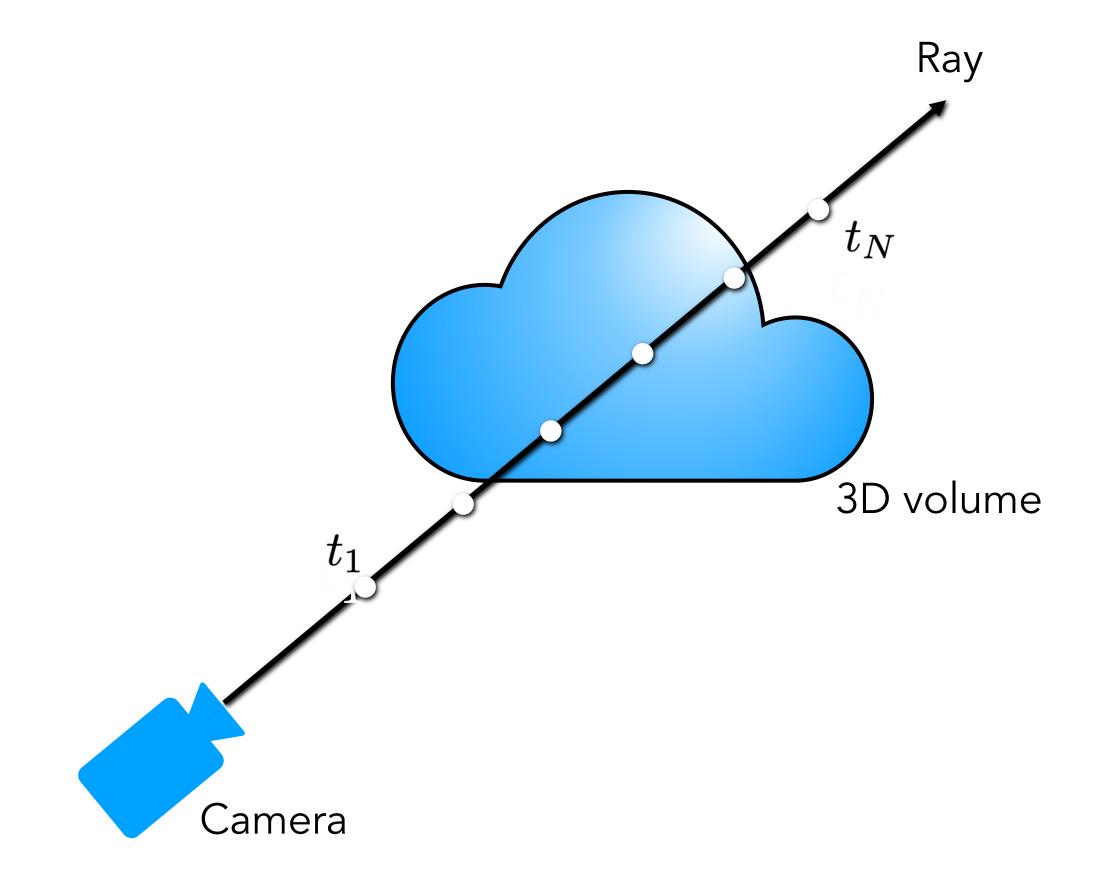


Rendering model for ray r(t) = o + td:

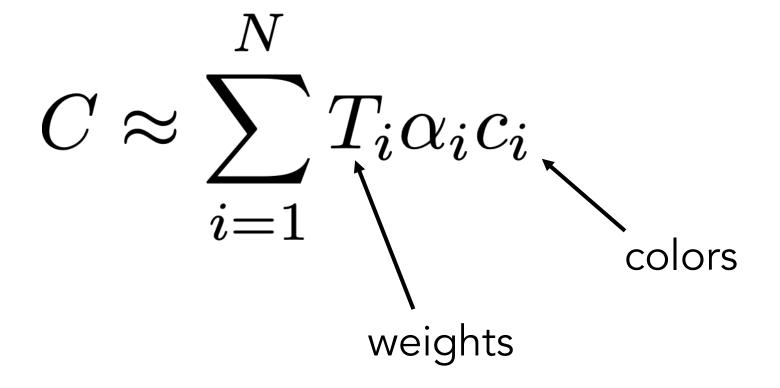


Rendering model for ray r(t) = o + td:



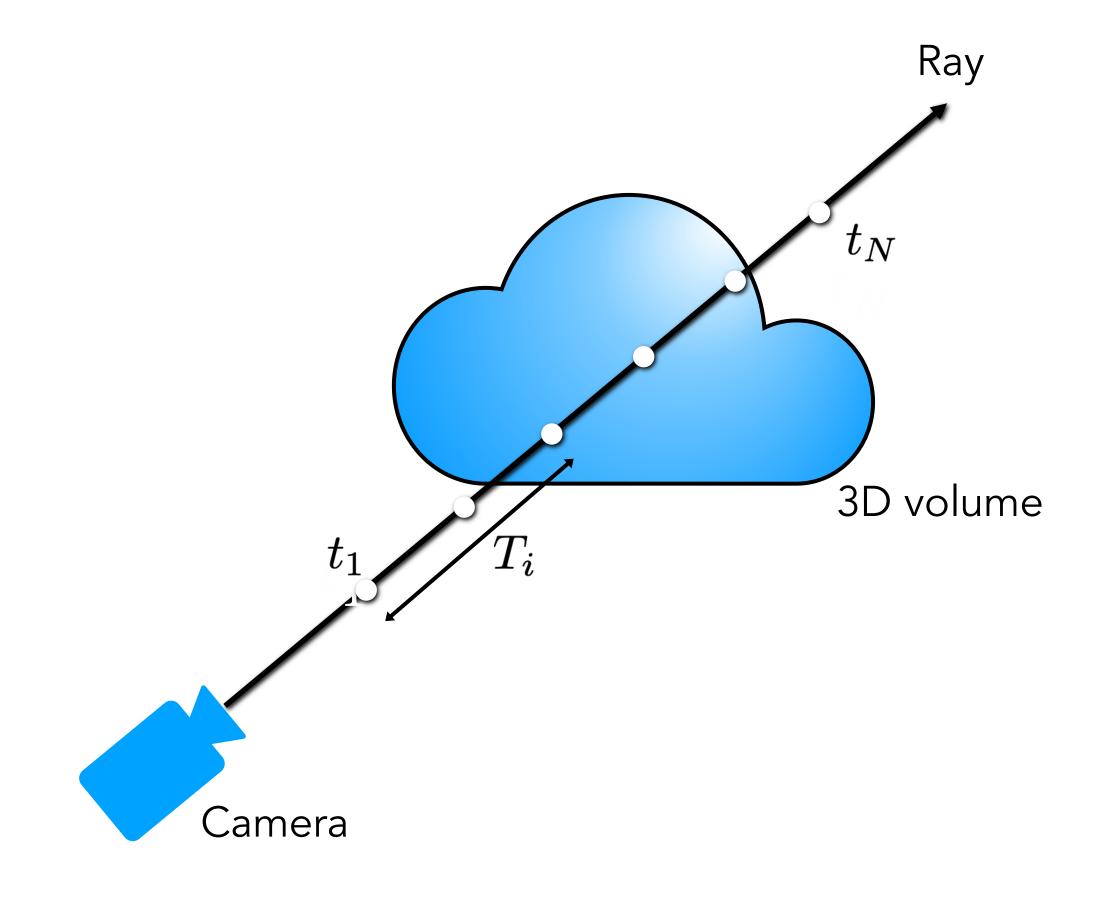


Rendering model for ray r(t) = o + td:

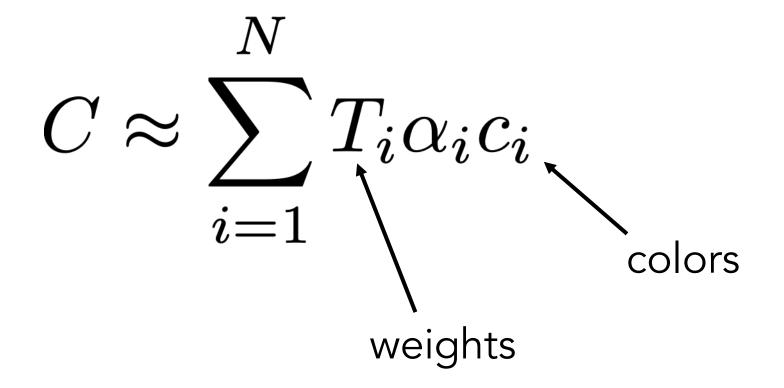


How much light is blocked earlier along ray: i-1

$$T_i = \prod_{j=1}^{r} (1 - \alpha_j)$$



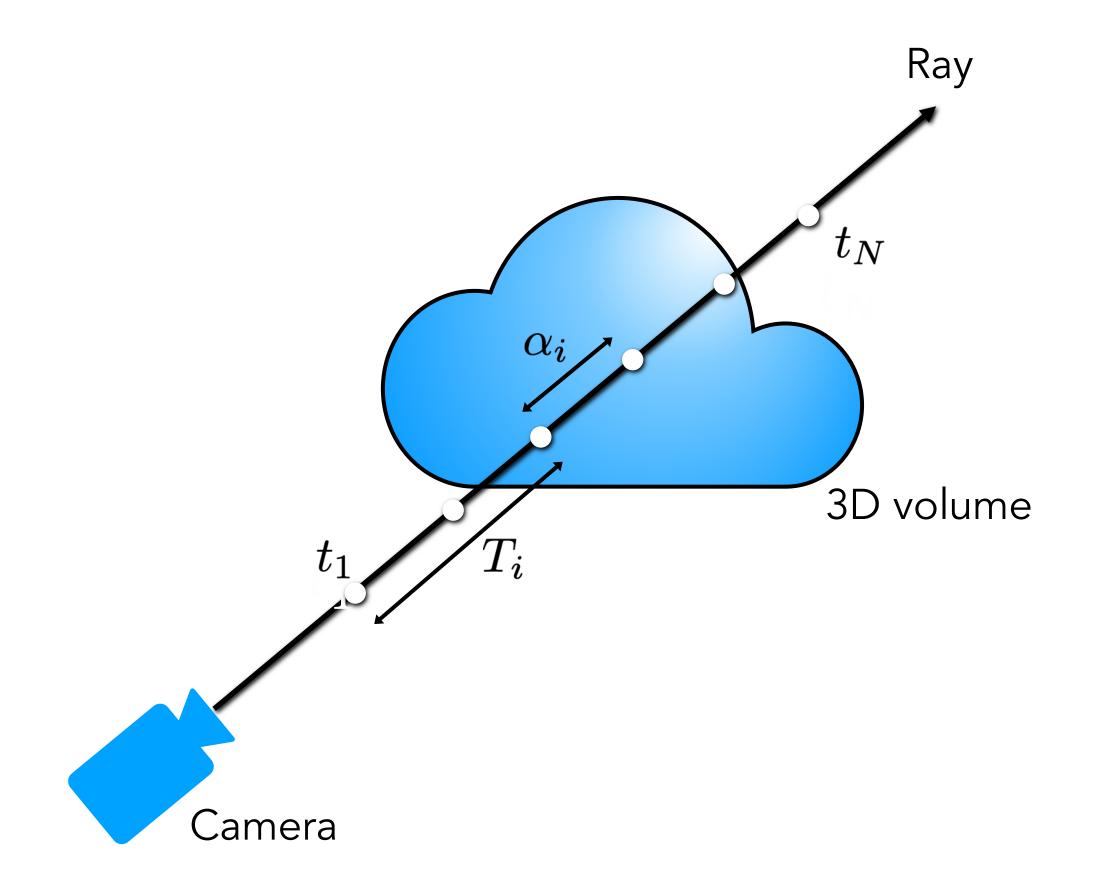
Rendering model for ray r(t) = o + td:



How much light is blocked earlier along ray: i-1

$$T_i = \prod_{j=1}^{r} (1 - \alpha_j)$$

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



Sigma parametrization for continuous opacity

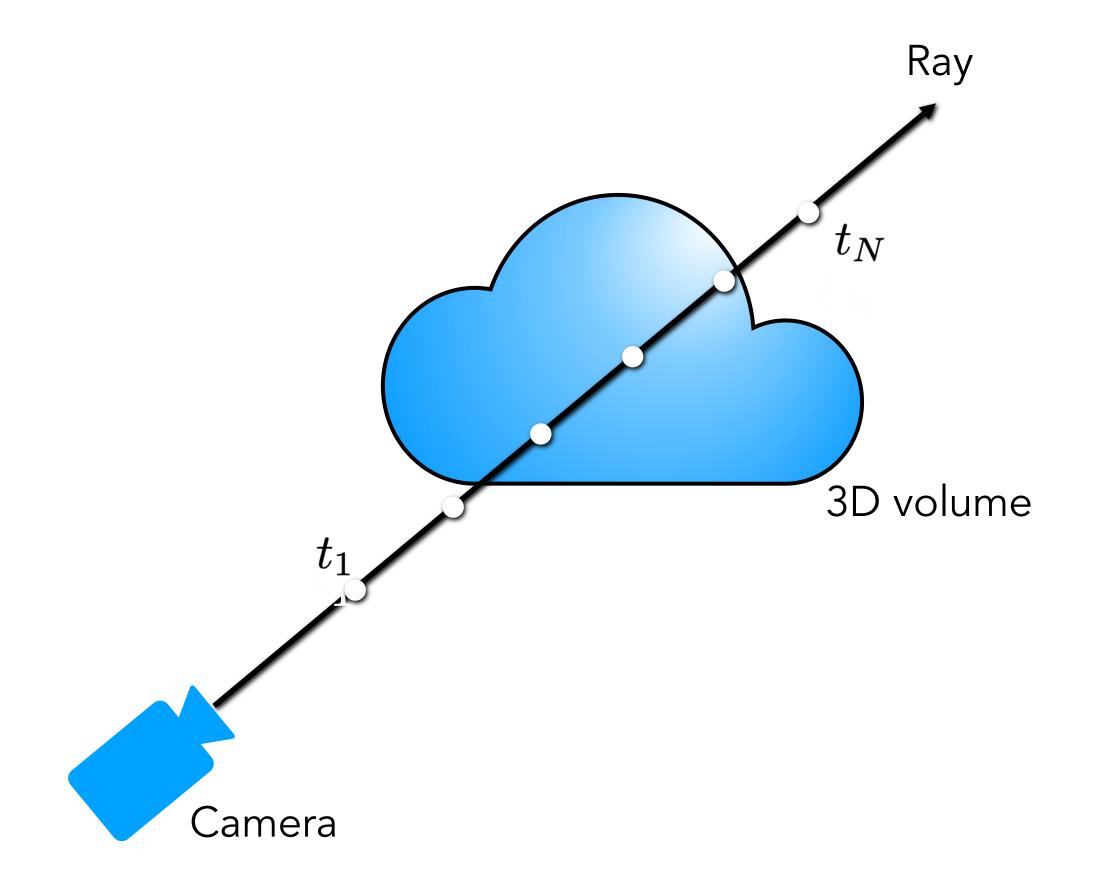
Rendering model for ray r(t) = o + td:

$$C pprox \sum_{i=1}^{N} T_i lpha_i c_i$$
 colors weights

How much light is blocked earlier along ray: i-1

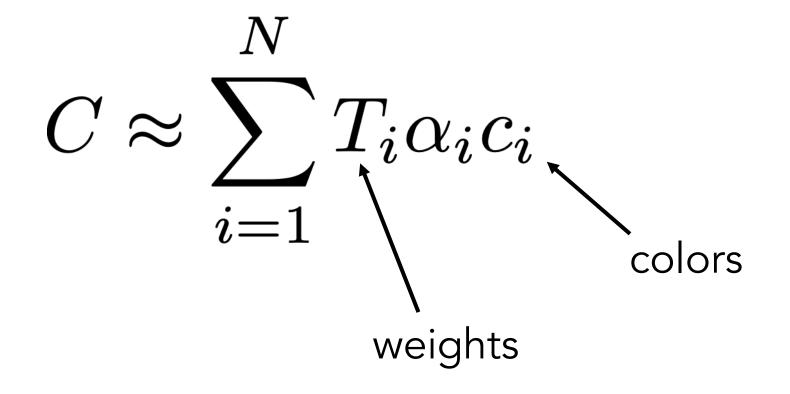
$$T_i = \prod_{j=1}^{r} (1 - \alpha_j)$$

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



Effective resolution is tied to distance between samples

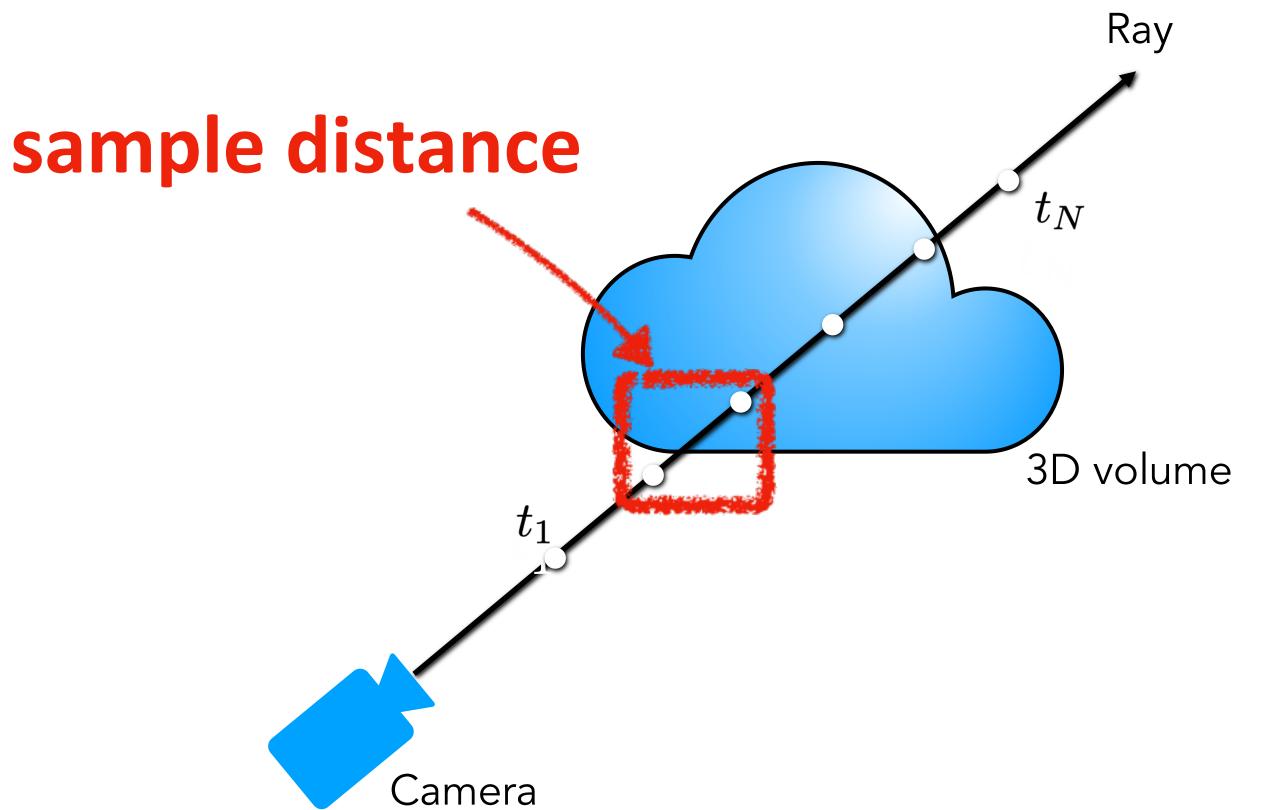
Rendering model for ray r(t) = o + td:



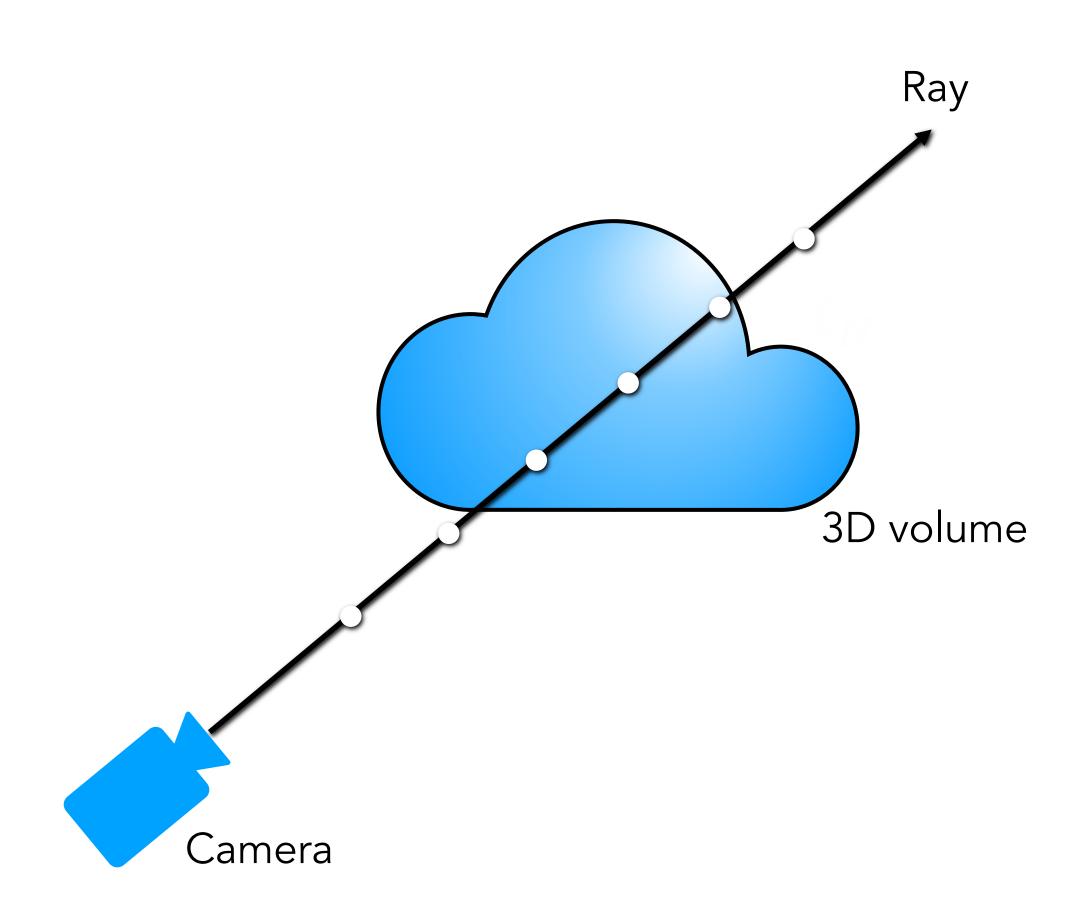
How much light is blocked earlier along ray: i-1

$$T_i = \prod_{j=1}^{n} (1 - \alpha_j)$$

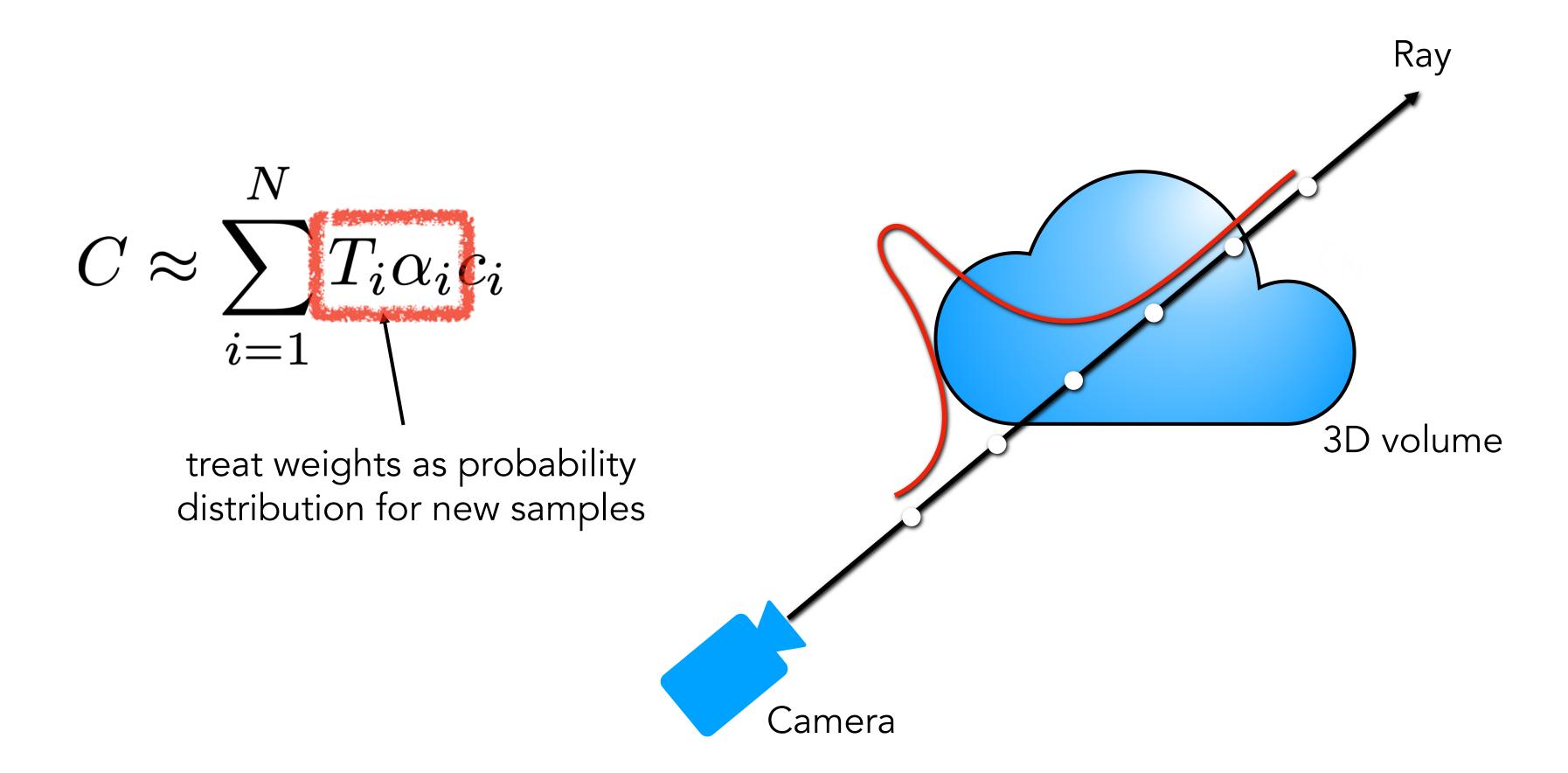
$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



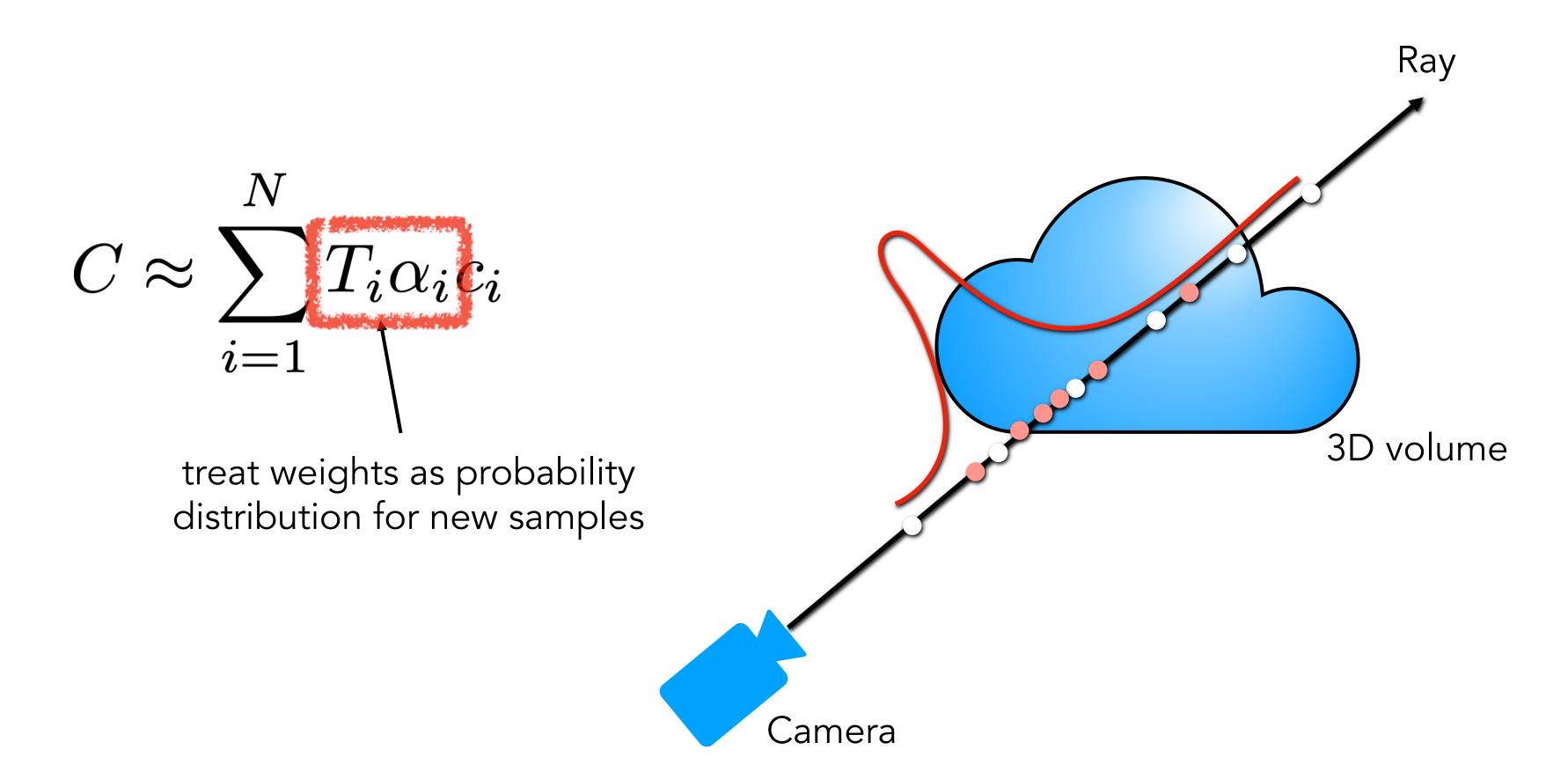
Can we allocate samples more efficiently? Two pass rendering



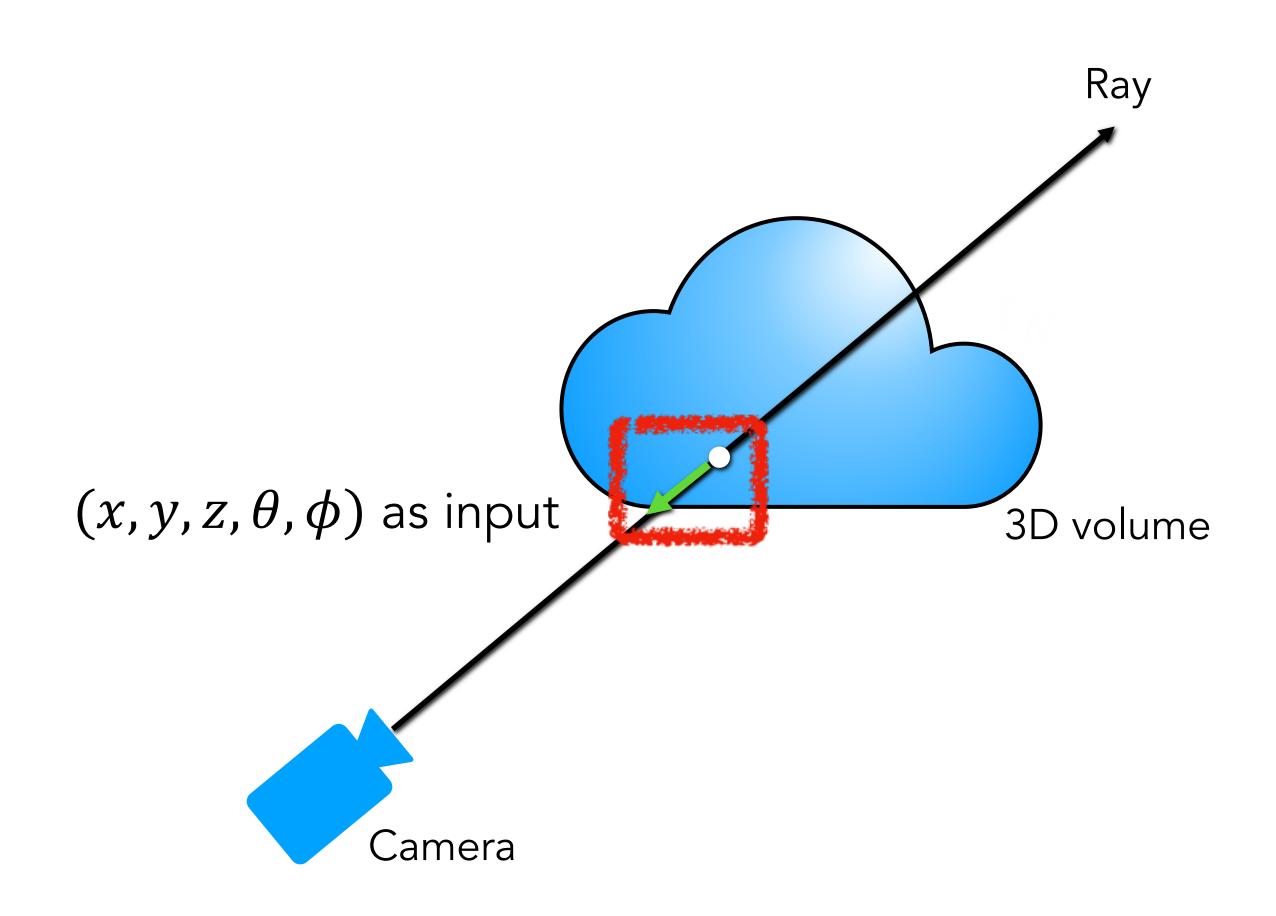
Two pass rendering: coarse



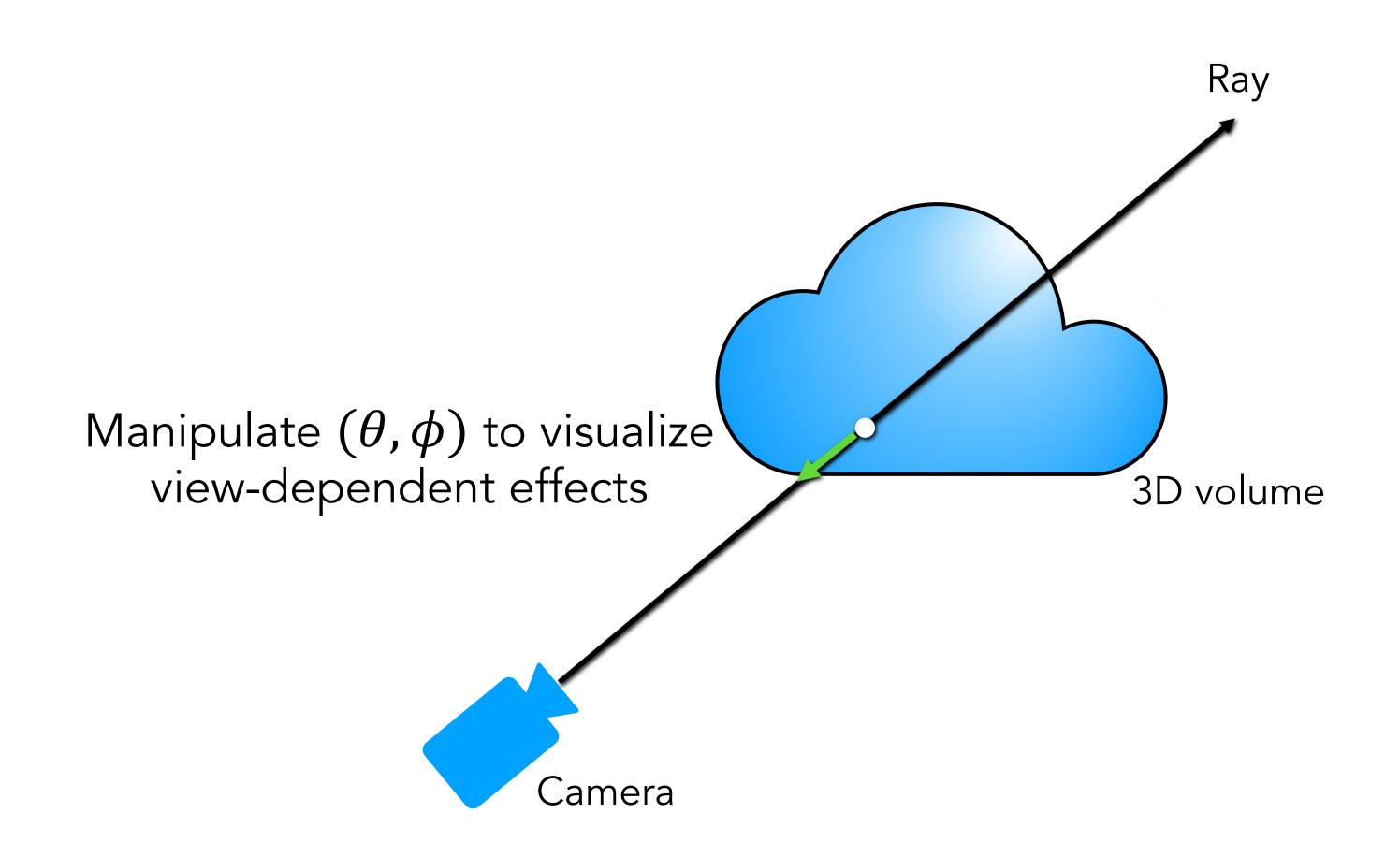
Two pass rendering: fine



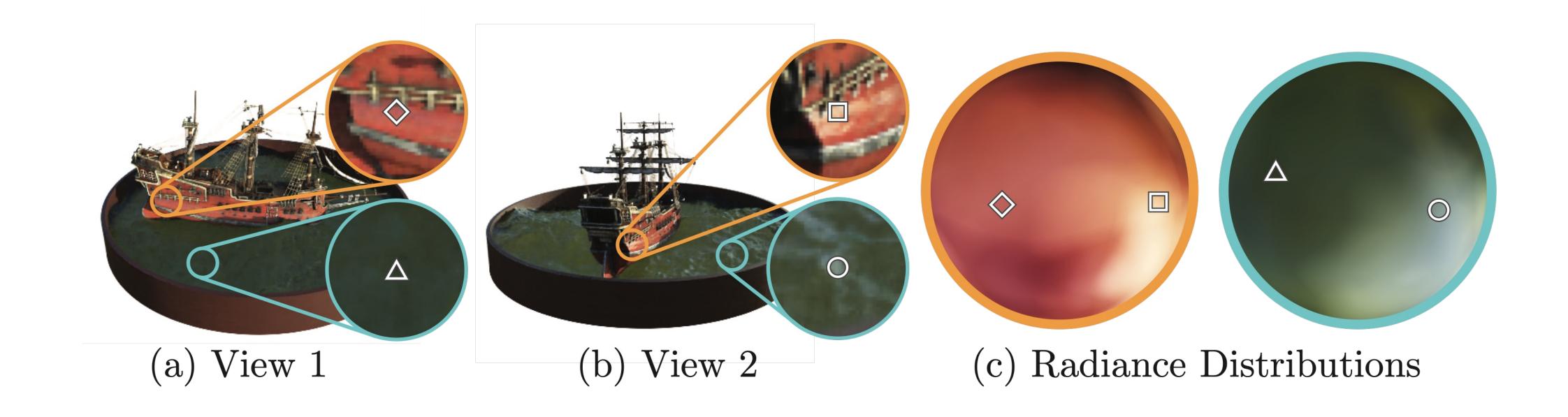
Viewing directions as input



Viewing directions as input



Viewing directions as input

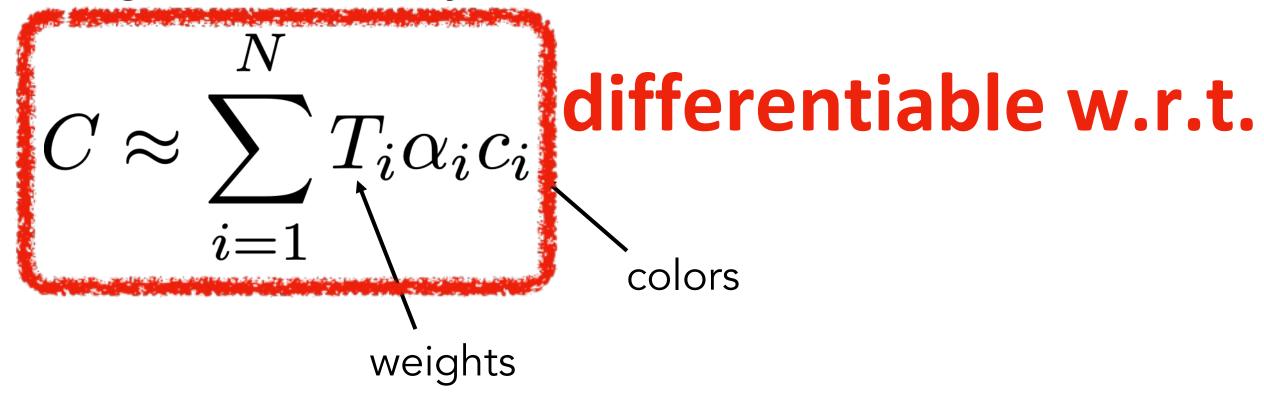


Key points

- ► Continuous neural network as a volumetric scene representation (5D = xyz + direction)
- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)
- One extra trick for passing coordinates into network to get high frequency details

Volume rendering is trivially differentiable

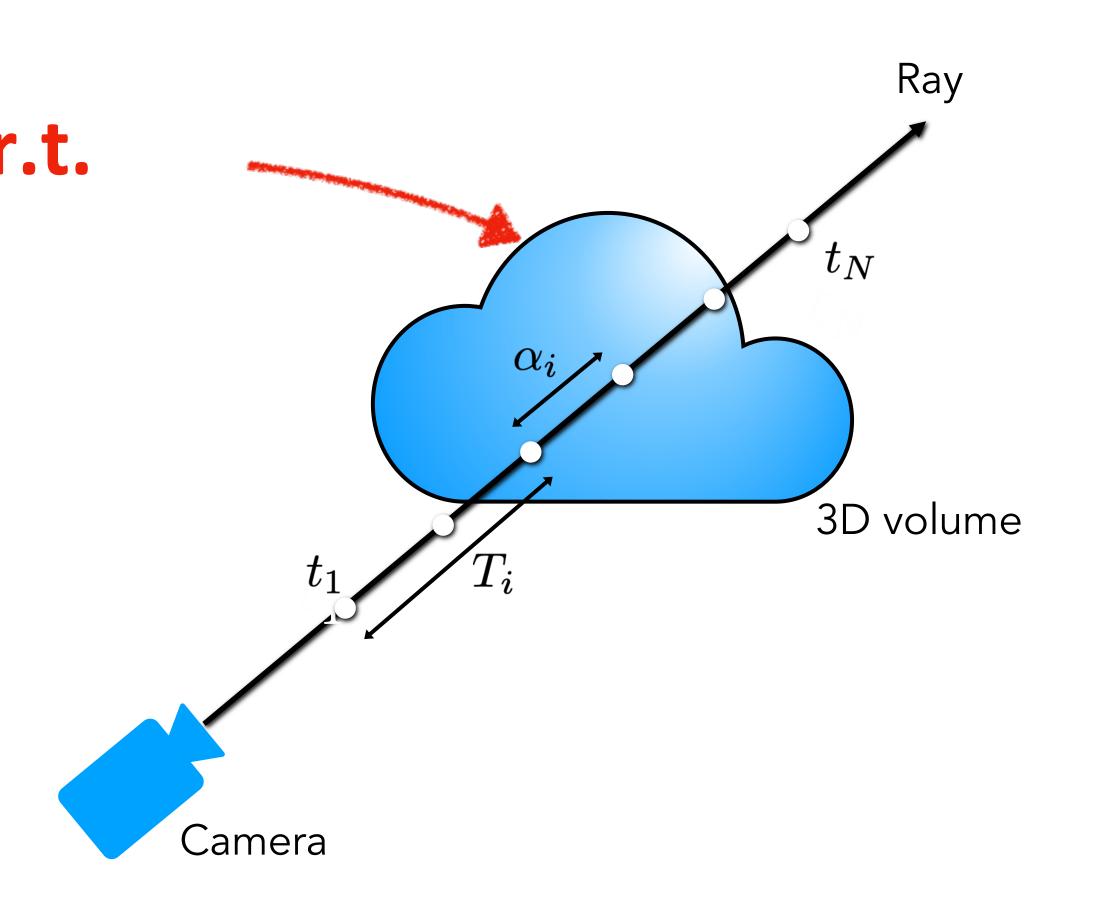
Rendering model for ray r(t) = o + td:



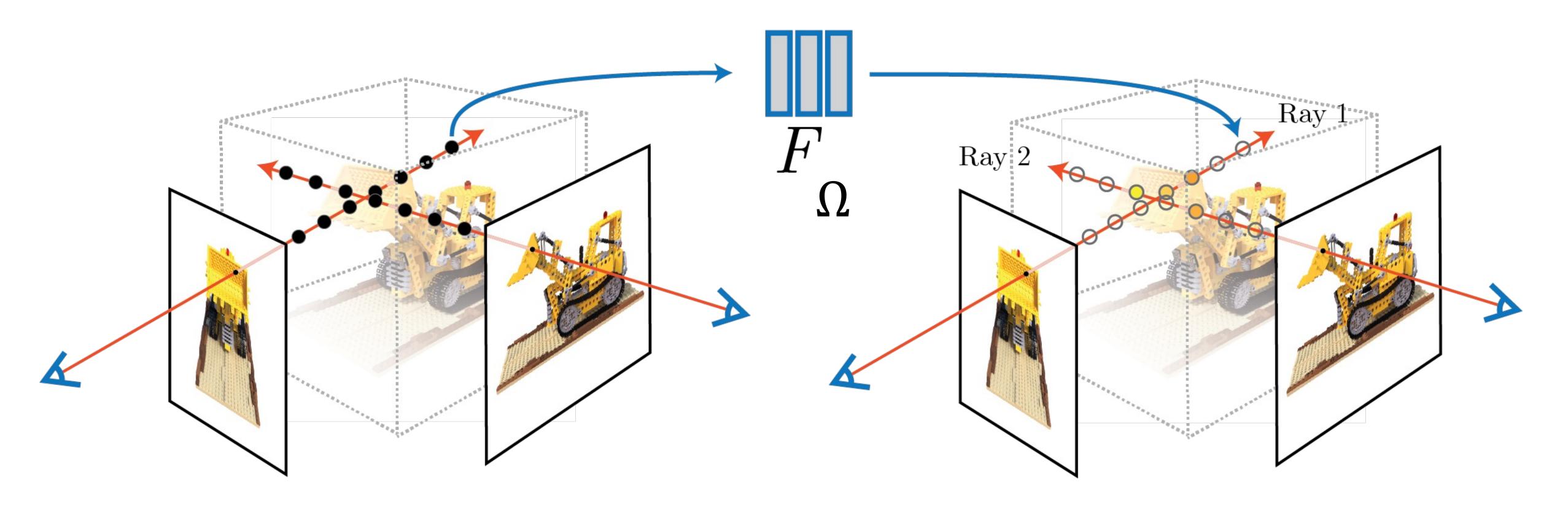
How much light is blocked earlier along ray: i-1

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

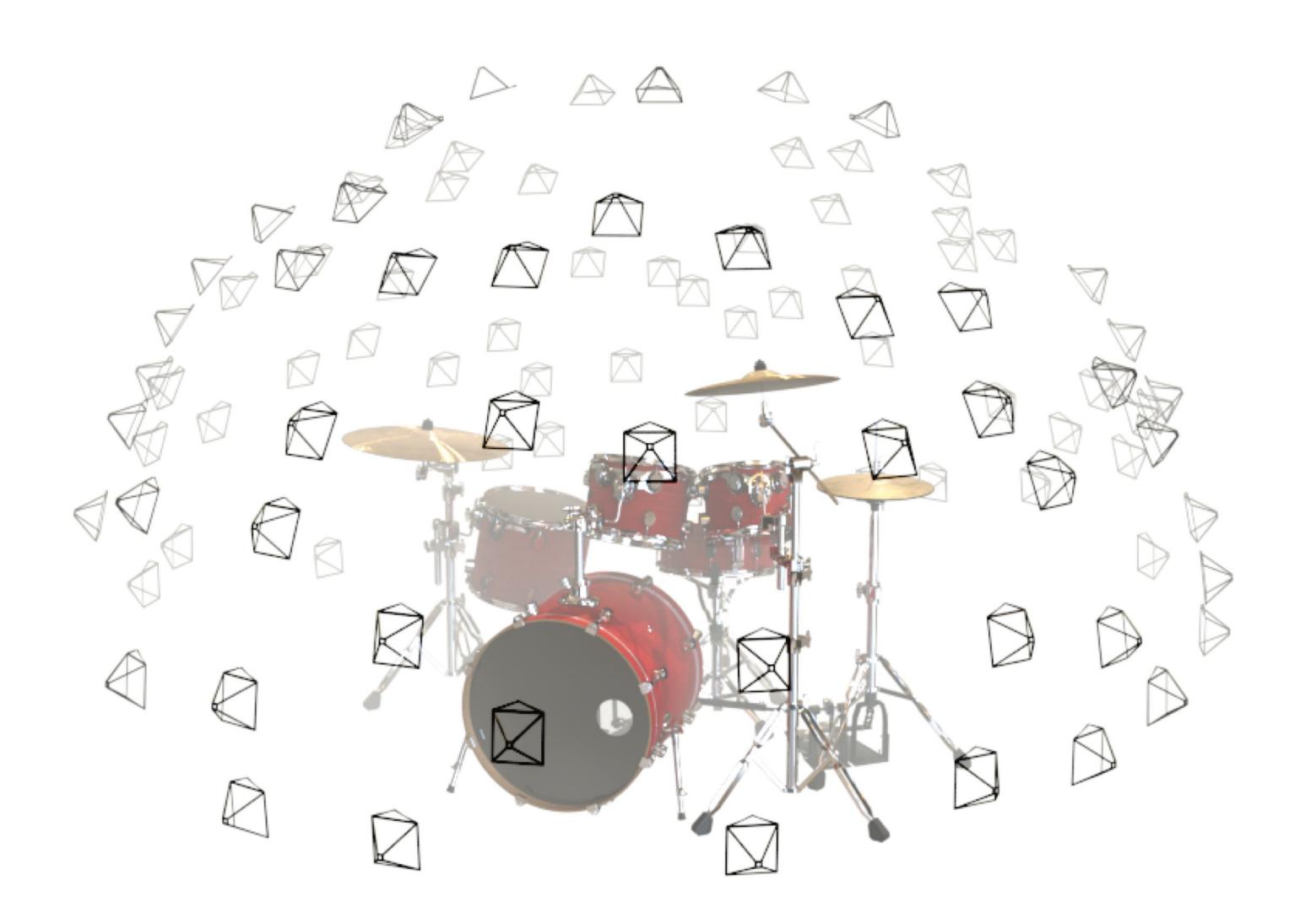


Optimize with gradient descent on rendering loss



$$\min_{\Omega} \sum_{i} \| \operatorname{render}^{(i)}(F_{\Omega}) - I_{\operatorname{gt}}^{(i)} \|^{2}$$

Training network to reproduce all input views of the scene



Naive implementation produces blurry results

NeRF (Naive)

Naive implementation produces blurry results

NeRF (Naive)

NeRF (with positional encoding)

Key points

- Continuous neural network as a volumetric scene representation (5D = xyz + direction)
- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)
- One extra trick for passing coordinates into network to get high frequency details

Challenge:

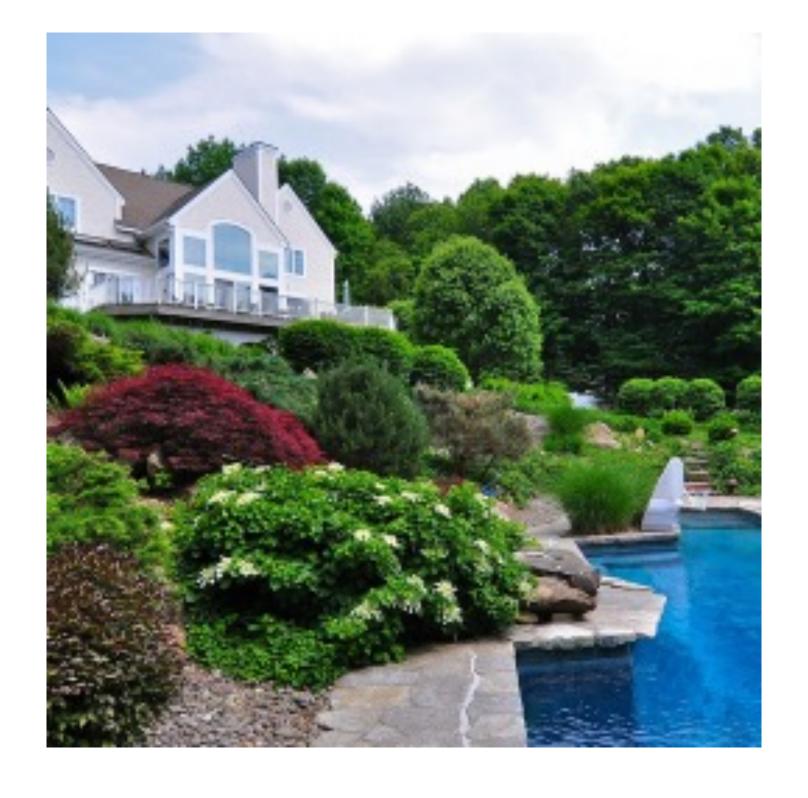
How to get MLPs to represent higher frequency functions?

Simpler toy problem: memorizing a 2D image

$$(x,y) \longrightarrow (r,g,b)$$

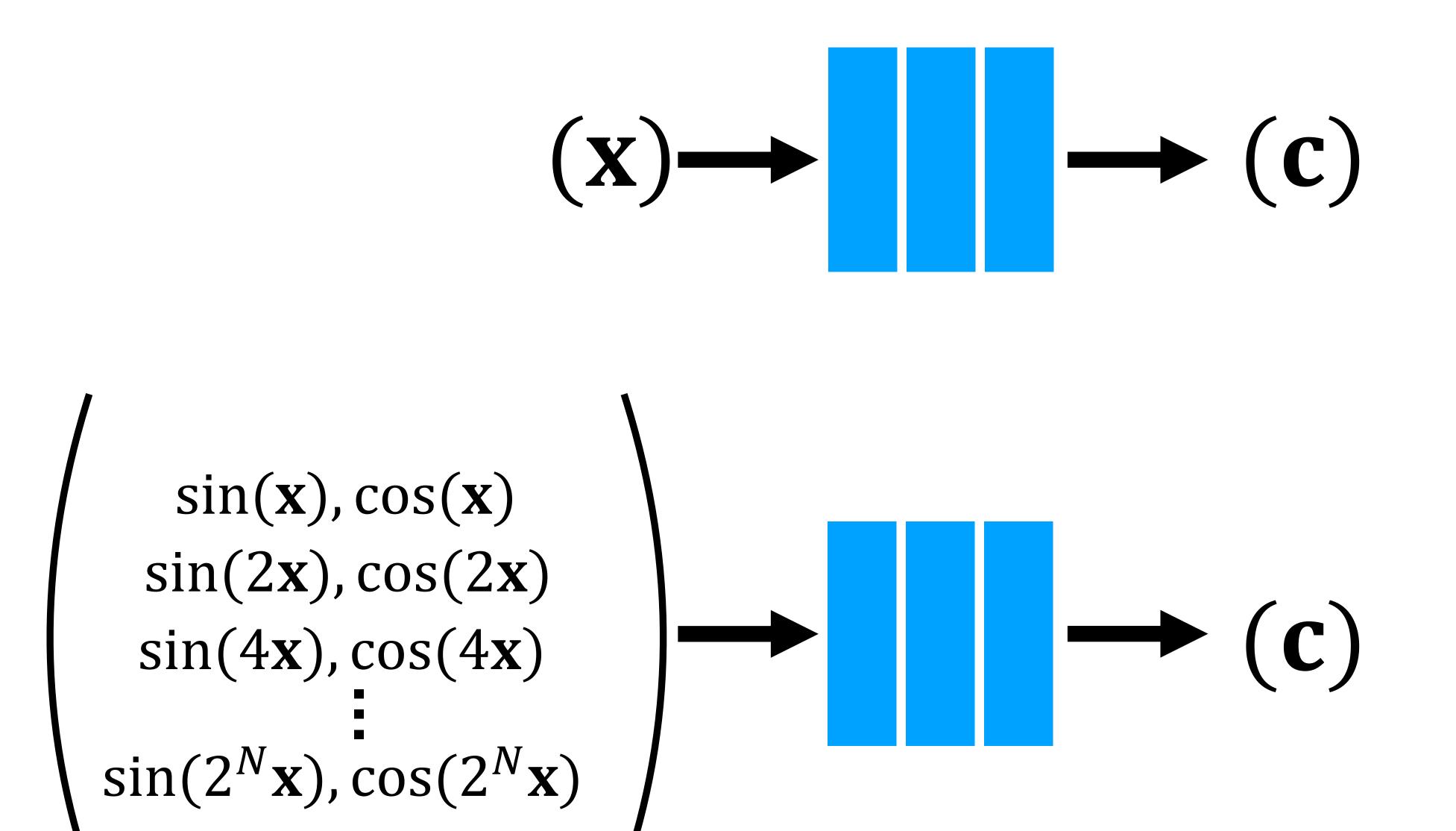
Simple trick enables network to memorize images

Ground truth image



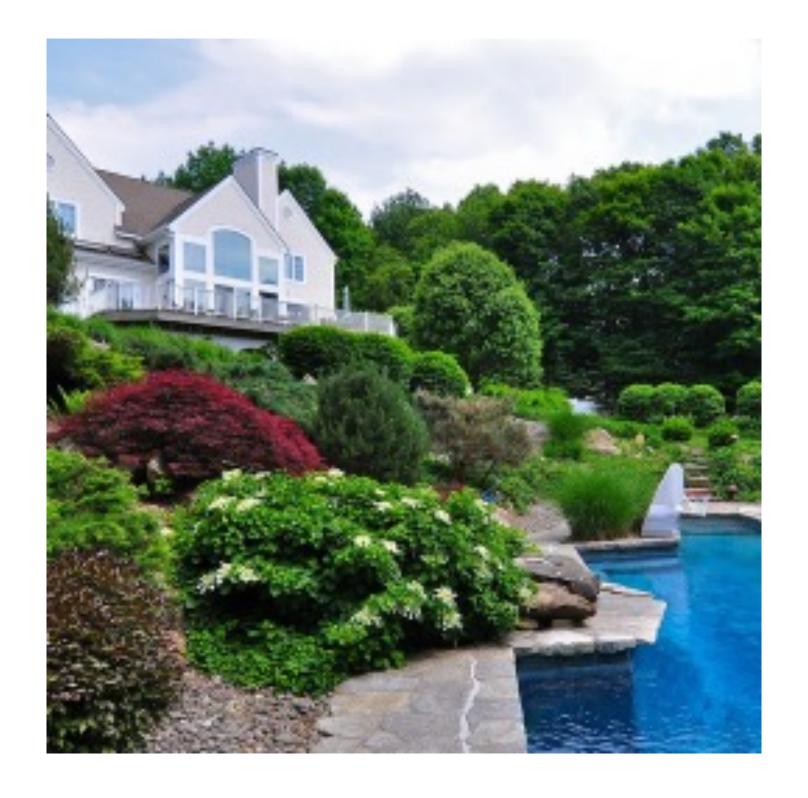
Standard fully-connected net

Positional encoding: high frequency embedding of input coordinates

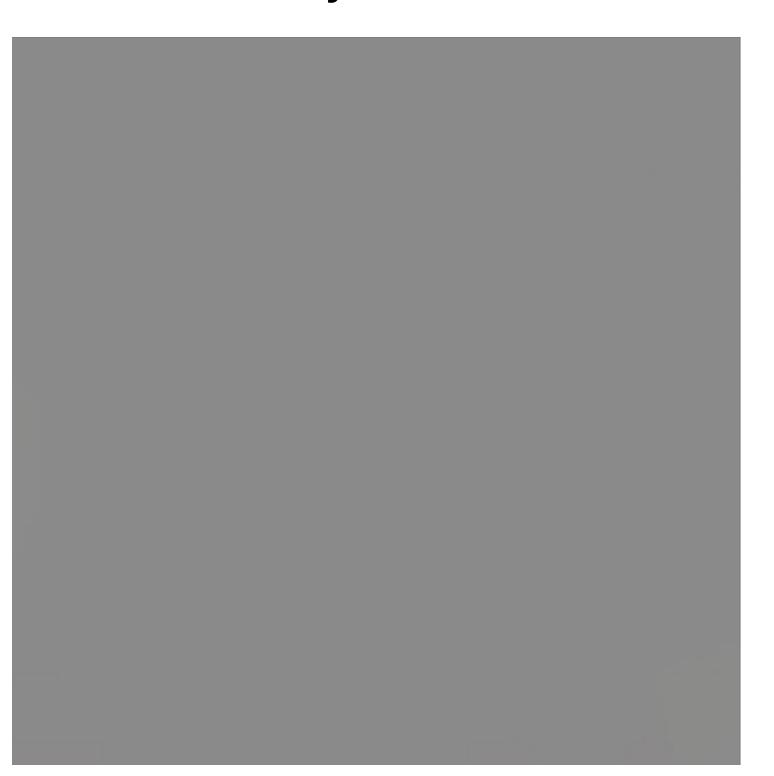


Simple trick enables network to memorize images

Ground truth image

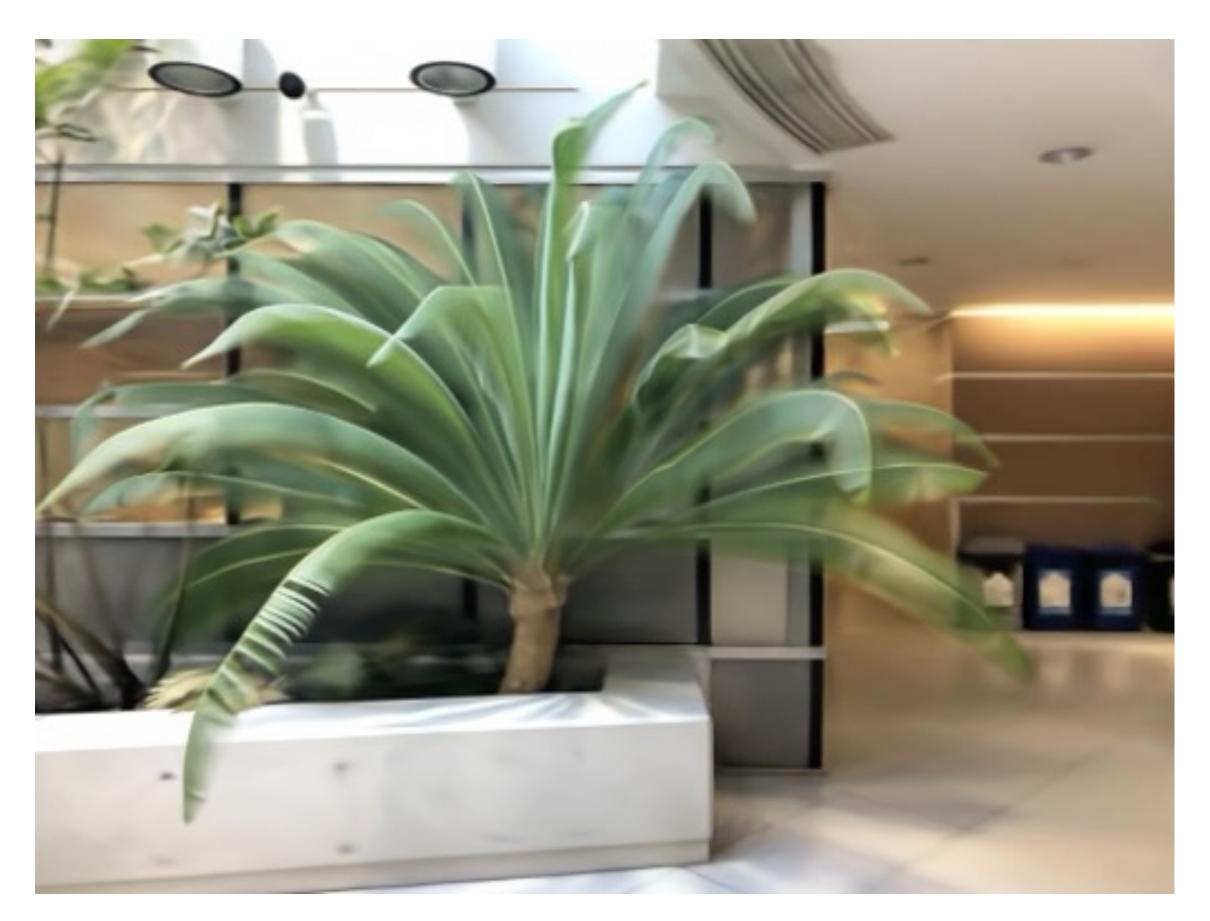


Standard fully-connected net



With "embedding"

Positional encoding also directly improves our scene representation!

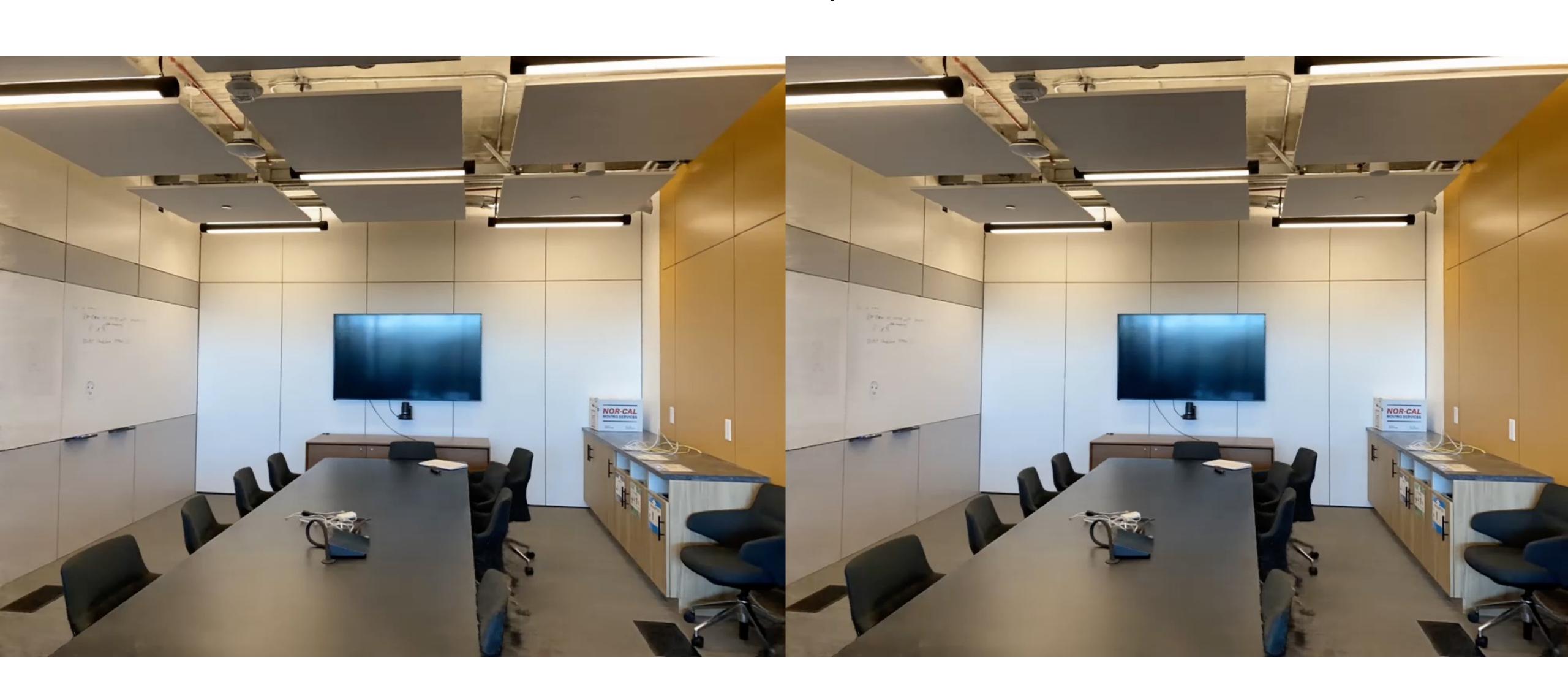


NeRF (Naive)

NeRF (with positional encoding)

Results

NeRF encodes convincing view-dependent effects using directional dependence



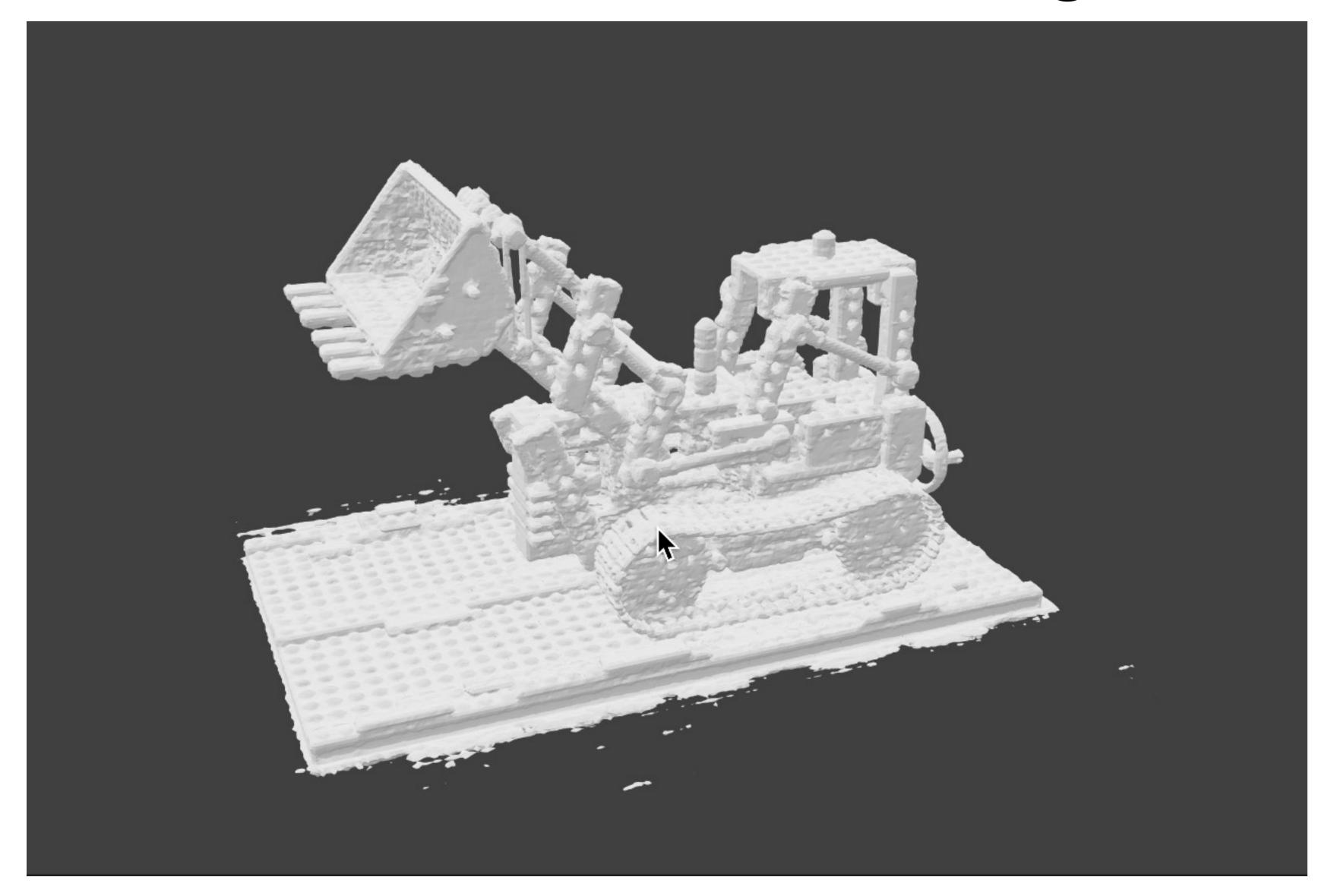
NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes detailed scene geometry with occlusion effects

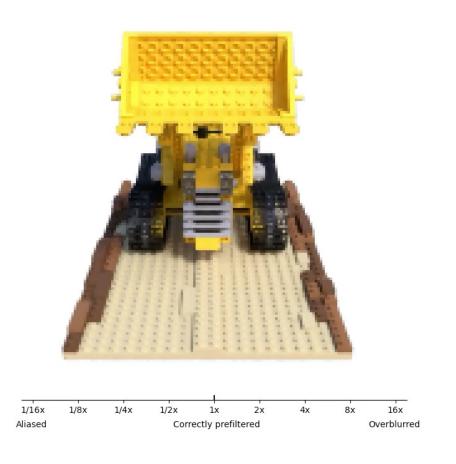
NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry



Thank You!



16-726, Spring 2023

https://learning-image-synthesis.github.io/sp23